事例報告

2018 年西日本豪雨における広島県坂町総頭川周辺での土石流発生状況 と堆積物特性

Occurrence Conditions and Sediment Characteristics of Debris Flows Around Sozu River in Saka Town, Hiroshima Prefecture During 2018 Western Japan Floods

松木宏彰	Hiroaki MATSUGI	(復建調査設計(株))
楮原京子	Kyoko KAGOHARA	(山口大学教育学部)
川島尚宗	Takamune KAWASHIMA	(広島大学総合博物館)
鈴木素之	Motoyuki SUZUKI	(山口大学大学院創成科学研究科)

平成 30 年 7 月豪雨で土砂洪水氾濫が起こった広島県坂町において,過去の土石流発生 時期を現地調査と史料調査に基づき検討した.総頭川本流では,過去の3枚の土石流堆積 物から西暦 1400 年以前,1430~1480 年頃,1800 年頃に土石流が発生したと推定された. また,同支川のため池では 1999 年の豪雨によって形成された可能性が高い土石流性堆積 物を確認した.自治体史と照合すると,近世までは同一渓流で概ね 150~400 年間隔で土 石流が発生していたが,近年ではその間隔が短い傾向が認められた.今後は,土砂災害の 多発期となる可能性を見据えた対策が必要と考えられる.

キーワード:土石流,年代測定,自治体史

(IGC : A-02, B-11, C-06)

1. はじめに

平成30年7月6日~8日の3日間,その前週の台風の 影響が長引き,西日本一帯で豪雨が発生した.その降水 量は広島県呉市警固屋観測所で累積雨量600mmに迫り, 未曽有の豪雨であった.また,この豪雨を受けて広島, 岡山,愛媛を中心に各地で甚大な土砂・水災害が発生し た.このとき,被災者の捜索・救出活動を阻んだものが 広範囲に及ぶ大量の土砂であった.これは,長時間にわ たる大量の降水により,土石流に含まれる細粒な土砂が 後続の洪水流によって流出し続け,河床が上昇した箇所 や閉塞部等において溢れ出したことによるものであり,

「土砂洪水氾濫」と言われる.一方,被災者から「こん な大水害が起こるとは思ってもみなかった」といった声 が聞こえ,地球温暖化による異常気象が各地で顕在化し て,どこにおいても自然外力が人間の防御力を超えるこ とが起こると想定した防災対策を講じる時期に来たとい える.

筆者らは、平成21年7月に土石流災害が発生した山口 県防府市の佐波川下流域において、露頭調査や地層抜き 取り調査をはじめとする現地調査と土壌分析を実施し、 土石流扇状地と氾濫原が交差する地域における洪水・土 石流の発生年代を推定してきた¹⁾.また、このようにし て得た洪水・土石流イベントを歴史資料と照合すること で、調査地域における土砂災害発生履歴を明確にし、災 害発生とその周期性について議論してきた.

本研究では、平成 30 年 7 月豪雨(以下, 2018 年西日 本豪雨と記す)で土砂洪水氾濫が起こった広島県のいく つかの地域を研究対象として,鈴木ほか¹⁾の研究方法を 適用した.そのうち,本論では広島県坂町総頭川上流部 での土石流発生状況と堆積物特性について調査検討した 結果を報告する.

2. 広島県における土砂災害の発生状況

研究対象地域を含めた広島県では、過去にも多くの災 害が発生してきた²⁾.表-1をみると、明治以後にも土砂 災害が頻繁に起きていたことが分かる.近年では 2018 年 西日本豪雨の他に、平成 26 (2014) 年 8 月豪雨によって 土石流災害が同時多発的に発生し甚大な被害をもたらし た.さらに、表-1中の平成 11 (1999) 年 6 月の豪雨は土 砂災害防止法制定の、平成 26 (2014) 年 8 月豪雨は同法 改正の契機になった.このように、広島県では、我が国 の防災対策に変革をもたらす程(過去に前例のない規模) の土砂災害が起きてきたことが分かる.

国土交通省が公表している「都道府県別土砂災害危険 箇所」³⁾を見ると、広島県は土石流危険渓流、急傾斜地崩 壊危険箇所の項目で全国1位になっている.このことか ら、広島県における土砂災害リスクは我が国でも高く、 災害の誘因となる大雨や地震の際には、他の地域よりも 被害が大きくなりやすい県であることが分かる.

広島県において土砂災害が多い原因の一つとして,風 化花崗岩類とその風化残積土(まさ土)が広く分布する ことがあげられる.花崗岩類が風化したまさ土は水を含 むともろく崩れやすい性質がある.これに加えて,人口

表-1 過去の主な土砂災害一覧表 (出典:文献²⁾をもとに作成)

No.	発生年月	要因	主な被災地	被害概要
1	大正15年9月	集中豪雨	広島市	山本川(祇園町死者 24 名),温品川(温品町, 死者 4 名),畑賀川 (瀬野川町,死者 69 名) 他
2	昭和20年9月	枕崎台風	呉市, 大野町	死者行方不明者 2,012 名
3	昭和26年10月	ルース台 風	大竹市,佐伯郡	死者行方不明者 166 名
4	昭和 42 年 7 月	豪雨	呉市	死者行方不明者 159 名
5	昭和47年7月	豪雨	三次市	死者行方不明者 39 名
6	昭和63年6月	豪雨	力口言十冊丁	死者行方不明者 15 名
7	平成5年7月	台風5号	戸河内町, 筒賀村	家屋全壊1戸他
8	平成11年6月	豪雨	広島市,呉市	死者行方不明者 32 名
9	平成13年3月	平成 13 年 芸予地震	呉市	死者 1 名,家屋全壊 58 戸他
10	平成17年9月	台風 14 号	廿日市市	家屋全壊4戸,一部損壊44戸他
11	平成18年9月	台風 13 号	広島市,北広島町,安芸高 田市他	死者 1 名,行方不明者 1 名,家屋全壊 4 戸, 半壊 6 戸他
12	平成22年7月	豪雨	庄原市	死者 1 名,家屋全壊 12 戸, 半壊 12 戸, 一部損 壊 6 戸他
13	平成 26 年 8 月	豪雨	広島市,安芸高田市,三次 市,福山市	死者 77 名(災害関連死 3 名含む),家屋全壊 133 戸,半壊 122 戸, 一部損壊 175 戸他
14	平成 30 年 7 月	豪雨	広島市, 呉市, 三原市, 東 広島市, 熊野町, 坂町他	死者 108 名, 行方不明者 6 名, 家屋全壊 1, 029 戸, 半壊 2, 888 戸, 一部損壊 1, 898 戸他

増大や急激な都市化を経験した広島市や呉市をはじめと する広島湾沿岸部の都市郊外では,住宅地と山・崖や渓 流が近接する状況が発生していることも原因としてあげ られよう.このように,地形・地質などの自然条件だけ でなく,社会的要因も相まって,広島県内には土砂災害 の被害が発生しやすい場所が多く形成されたと考えられ る.

3. 研究方法

3.1 概要

2018年西日本豪雨では,広島県内の複数の渓流で土石 流が発生した.それらは諸河川に流れ込み,水と土砂が 側溝や河川狭隘部で溢れ出し,道路や住宅地に流れ込む 土砂洪水氾濫の様相を呈した甚大な被害をもたらした. 調査は,そのような被害が顕著であった広島県坂町を流 れる総頭川を対象とした(図-1).坂町周辺には明治 40 年(1907)に土石流災害が発生していたことを伝える水 害碑があり,地域の防災,災害伝承についても検討可能 な地域である.

調査方法は大きく二つに分けられ,一つは坂町での現 地地質調査から過去の土石流の発生時期を明らかにする こと,もう一つは広島湾沿岸部の市町村を対象として自 治体史を調べ,土石流災害の記述から発生記録を抽出・ 整理することである.そして,現地地質調査と史料調査 で得られた結果に基づき,坂町における土砂災害発生履 歴や発生間隔について議論した.

3.2 現地調査

調査箇所は坂町に流れ込む総頭川の上流域で、土石流 によって石積み堰堤やため池の損壊が発生した地点であ る(図-2).この地点は総頭川左岸部にあたり, 渓岸露頭 部では観察に基づく地層区分から土石流堆積物を認定し, その堆積年代を明らかにするための年代測定用の炭化物 試料の採取を行った.また,ため池では,露頭調査とジ オスライサーを用いた連続試料採取を実施した.ここで 用いた小型のジオスライサーは,長さ1.5m,幅約0.1m で,サンプルボックスとシャッタープレートから成り, 地層抜き取り調査に用いる器具である(図-3).作業手順 はサンプルボックス,シャッタープレートの順にハンマ ーで打ち込み(写真-1),三脚とチェーンブロックを用い て地中からジオスライサーを引き揚げるというものであ る(写真-2).

採取した柱状試料は,目視観察により粒度や円磨度, 色調などの特徴から土石流堆積物,河川堆積物,湖沼堆

図-1 坂町総頭川の空中写真 (国土地理院空中写真⁴⁾, 平成 30 年 7 月 11 日撮影)

図-2 坂町総頭川周辺の地形図と調査箇所位置図 図中の赤枠の範囲が調査箇所を示す. (地理院地図から引用)

図-3 ジオスライサーによる地層抜き取りイメージ

写真-1 ハンマーによるジオスライサーの打ち込み

写真-2 サンプルボックスの引き揚げ

積物,表土などの判別を行い,年代測定用の炭化物,土 質試験用の土試料を採取した.採取した試料の年代測定 には¹⁴C年代測定法を適用した.

¹⁴C年代測定法は、炭素の放射性同位体(¹⁴C)を用いた考古学試料などの年代測定法の一つであり、大気中に一定の濃度で含まれる¹⁴Cが生物体にほぼ同じ濃度で取り込まれ、生物体が死ぬと、その時点から¹⁴Cの半減期に従って減り続けることを利用し、その生物の生存年代を算定するものである.試料の調整後(超音波洗浄,酸・ アルカリ・酸洗浄),加速度質量分析計(コンパクトAMS, NEC製,1.5SDH)を用いて試料の¹⁴C濃度を測定し、得られた¹⁴C濃度に対して同位体分別効果の補正(炭素同位体比δ¹³C)を行った後、¹⁴C年代および暦年代を算出した.暦年補正にはOxCa14.3(較正曲線データ:IntCa113 および Post-bomb NH2)を使用した.以上の採取試料に対する¹⁴C法年代測定は(株)パレオ・ラボに依頼した.

3.3 自治体史の調査

自治体史の調査に関しては西本 ⁵⁾の手法を参考にして, 広島湾沿岸地域に位置する 17 市町村の自治体史の文献⁶⁾ ⁻²⁸⁾を調査した.調査対象の文献資料は東京にある国立国 会図書館ならびに都立中央図書館で現物を確認して,該 当する記述を抽出した.

4. 現地調査の結果と考察

4.1 調査箇所の状況

総頭川には複数の石積み堰堤が設置されていたが,土 石流の衝撃で本体の一部や袖部が破壊されている.調査 箇所は,堰堤の約10m下流の左岸側の斜面で,侵食によ り高さ約3mの崖が出現した(写真-3).

また,支川合流部のため池の写真と平面図をそれぞれ 写真-4と図-4に示す.ため池には谷部(図-4の左方) から流水があり,本流の総頭川に流れ込んでいる.

2018年の被災前の空中写真や地形図によれば、ため 池は直径10m以上あり、現地で確認した余水吐けとの

写真-3 総頭川左岸側渓岸部の土石流堆積物の分布状況

写真-4 被災ため池の状況(d地点の南西方向より)

図-4 ため池の概略平面図

写真-5 d 地点に存在する土石流堆積物層

高低差から 2m以上の水深があったと推定される.現在 は、写真-4 に示すように、堤体の一部が破損したため、 ため池の最上面は水域がわずかで、大部分は粗粒な砂と その下には有機質土混りの砂で構成されていた.一方、 ため池上流の谷の洗掘は軽微であった.これらの様子か ら 2018 年の災害において、支川からは巨石が混入するよ うな土石流本体は、ため池までは到達していないと推察 される.しかし、堤体が損壊した際や上流側からわずか に流入した土砂などの影響で、ため池が埋積されたと推 察される.

ため池の表層直下の堆積物は植物の葉や有機質土に富 むシルト混りの砂であるが,ため池の堆積物がみえる露 頭(d地点)があり,その壁面においてシルト層に挟ま れた砂層を発見した(写真-5). この砂層は, 淡褐色の中 粒砂〜粗粒砂主体で, 層厚が約5~10cmであった.また, 砂層を挟むシルト層は有機質に富む黒色の堆積物(湖沼 堆積物)であることから,上記砂層は過去の土石流によ って短期間に堆積したものと考えられる.そこで,この 砂層の分布とその堆積年代を明らかにするため,ため池 内3箇所(S1,S2,S3)においてジオスライサーを用い て柱状試料を採取し,観察ならびに¹⁴C年代測定と土質 試験を行った.S1地点とS3地点では,土質試験の追加 のため試料を再度採取し,試料番号をS1'とS3'とした.

なお図-4 に示すように, S2 地点は, S1 地点の西側の 水流部で標高が約 0.4m低い箇所, S3 地点は東側の約 0.7 m低い箇所でそれぞれ実施したため, S1 地点以外では, この砂層は確認されなかった.

4.2 調査結果

4.2.1 地盤柱状図

渓岸露頭に分布する地層について,層相と堆積状況に 基づき下位より,下位土石流堆積物,上位土石流堆積物, 砂質土層,新規土石流堆積物の4層に区分した.

下位土石流堆積物は基盤の花崗岩を直接覆い,一部に 直径 0.5~1m 程度の玉石を含み,礫や玉石は基質に支持 された特徴を持つ土石流堆積物である.上位土石流堆積 物は直径 1~2m 程度の巨石を含み,基質は中粒砂主体で やや締まっており,上方粗粒化の特徴を持つ土石流堆積 物である.砂質土層は,渓岸部の地表直下に分布し,直 径 2~4cm の亜角礫を一部に挟む中粒砂主体の地層であ る.新規土石流堆積物は,直径 0.3~1m 程度の玉石を多 く含み未固結で締りは緩く,右岸側の斜面に渓岸部の堆 積物を覆って堆積する土石流堆積物である.渓岸部の堆 積物を覆って堆積する土石流堆積物である.渓岸部の堆 積物を覆って堆積する土石流堆積物である.渓岸部の堆

また,ジオスライサー調査とため池堆積物の露頭の観 察結果を以下に述べる.図-5(a)~(d)にS1~S3地点とd 地点の柱状図を示し,炭化物試料の年代を併せて示した.

S1'の試料は、GL-0.15mまでは暗灰色の有機質土を含む細粒分混り礫質砂で、GL-0.15~0.65m間は砂質粘性土で、GL-0.40~0.45m間に淡灰色の細粒分混り砂質礫をはさむ.GL-0.65以深は細粒分混り礫質砂である.

S2 の試料は、ため池の湛水部で採取したもので、GL-0.22mまでは褐色の礫混り砂質土で、GL-0.22~0.30m間 は灰色のシルト混り砂である.GL-0.30~0.33m間は、灰 褐色の細粒砂~中粒砂からなる砂質土である.

S3'の試料は、ため池中央部の離水した領域で採取した もので、GL-0.15mまでは細粒分混り礫質砂で、GL-0.15~ 0.30m間は暗灰色の腐植土を含む砂混り粘性土である. GL-0.30~0.37m間は、淡灰色の粘性土質礫質砂である. GL-0.37m~0.48m間は、上位に向かってやや粗粒化傾向 を示す灰色の砂混り粘性土で、GL-0.48m以深は粘性土質 礫質砂である.

試料No.	測定番号	測定試料	δ ¹³ C (‰)	暦年較正用年 代 (yrBP±1σ)	¹⁴ C 年代 (yrBP±1 σ)	¹⁴ C年代を暦年代に較正した年代範囲			
採取場所						1σ暦年代範囲	2σ暦年代範囲		
SD-1 総頭川左岸渓岸	PLD-38864	炭化物	-26.86±0.25	545 ± 20	545 ± 20	1331-1338 cal AD (9.8%) 1397-1421 cal AD (58.4%)	1320-1350 cal AD (25.5%) <u>1391-1430 cal AD (69.9%)</u>		
SD-2 総頭川左岸渓岸	PLD-38865	炭化物	-28.98±0.20	205 ± 16	205 ± 15	Post-bomb NH2 2013: 1662-1670 cal AD (15.0%) 1780-1798 cal AD (39.1%) 1943-1951 cal AD (14.2%)	Post-bomb NH2 2013: 1652-1681 cal AD (27.1%) 1739-1743 cal AD (0.9%) <u>1763-1801 cal AD (49.1%)</u> 1938-1952 cal AD (17.5%) 1952-1954 cal AD (0.8%)		
SD−3 総頭川左岸渓岸	PLD-38866	炭化物	-28.42±0.23	554 ± 21	555 ± 20	1328-1341 cal AD (22.8%) 1396-1416 cal AD (45.4%)	1317-1353 cal AD (39.3%) 1390-1425 cal AD (56.1%)		
SD−4 総頭川左岸渓岸	PLD-38867	炭化物	-30.49±0.23	481 ± 24	480 ± 25	1423-1441 cal AD (68.2%)	1413-1448 cal AD (95.4%)		
SD-6 総頭川左岸渓岸	PLD-39360	炭化物	-25.19±0.12	144±19	145±20	Post-bomb NH2 2013: 1680-1694 cal AD (10.8%) 1727-1764 cal AD (24.2%) 1774-1775 cal AD (0.5%) 1800-1813 cal AD (0.8.8%) 1838-1842 cal AD (1.9%) 1853-1858 cal AD (2.3%) 1862-1867 cal AD (2.7%) 1918-1939 cal AD (15.6%) 1952-1954 cal AD (1.3%)	Post-bomb NH2 2013: 1669-1700 cal AD (15.1%) 1702-1706 cal AD (0.5%) <u>1719-1780 cal AD (31.2%)</u> 1798-1819 cal AD (10.9%) 1823-1825 cal AD (0.2%) 1832-1881 cal AD (18.1%) 1915-1944 cal AD (17.8%) 1951-1954 cal AD (1.6%)		
No.SD-7 総頭川左岸渓岸	PLD-39361	炭化物	-27.96±0.23	429 ± 21	430 ± 20	Post-bomb NH2 2013: 1439-1458 cal AD (68.2%)	Post-bomb NH2 2013: <u>1431-1480 cal AD (95.4%)</u>		
No.SD-8 d地点 GL-0.9m	PLD-39362	炭化物	-12.71±0.20	$\begin{array}{c} -2968\pm16\\ F^{14}C:\\ 1.4471\pm0.0030\end{array}$	-2970 ± 15	Post-bomb NH2 2013: 1973-1973 cal AD (20.3%) 1973-1973 cal AD (47.9%)	Post-bomb NH2 2013: 1971-1971 cal AD (1.3%) <u>1972-1974 cal AD (94.1%)</u>		
No.SD-9 d地点 GL-0.8m	PLD-39363	炭化物	-29.10±0.24	$\begin{array}{c} -2490 \pm 19 \\ F^{14}\text{C:} \\ 1.\ 3635 \pm 0.\ 0032 \end{array}$	-2490 ± 20	Post-bomb NH2 2013: 1975-1975 cal AD (10.0%) 1975-1976 cal AD (58.2%)	Post-bomb NH2 2013: 1962-1962 cal AD (11.2%) 1974-1975 cal AD (16.8%) 1975-1976 cal AD (67.4%)		
試料No.SD-10 d地点 GL-0.75m	PLD-39364	葉	-27.33±0.15	-725 ± 18 F ¹⁴ C: 1.0946 ± 0.0026	-725±20	Post-bomb NH2 2013: 1999-2000 cal AD (68.2%)	Post-bomb NH2 2013: 1957-1958 cal AD (5.3%) <u>1998-2001 cal AD (55.2%)</u> 2001-2001 cal AD (4.9%)		
試料No.SD-11 d地点 GL-0.5m	PLD-39365	葉	-32.28±0.19	-314±22 F ¹⁴ C: 1.0399±0.0029	-315 ± 20	Post-bomb NH2 2013: 1956-1956 cal AD (68.2%)	Post-bomb NH2 2013: <u>1956-1956 cal AD (79.2%)</u> 2008-2008 cal AD (5.2%) 2009-2009 cal AD (11.0%)		
試料No.SD-21 S-1 GL-0.37m	PLD-39518	葉	-31.73±0.16	$\begin{array}{c} -459 \pm 19 \\ F^{14}C \\ 1.0588 \pm 0.0025 \end{array}$	-460 ± 20	Post-bomb NH2 2013: 1957-1957 cal AD (5.3%) 2006-2008 cal AD (48.8%) 2008-2008 cal AD (14.1%)	Post-bomb NH2 2013: 1956-1957 cal AD (9.3%) 2005-2005 cal AD (3.2%) 2005 cal AD (82.9%)		
試料No.SD-22 S-1 GL-0.45m	PLD-39519	木片	-28.79±0.25	$\begin{array}{c} -3535 \pm 19 \\ F^{14}C \\ 1.\ 5530 \pm 0.\ 0038 \end{array}$	-3535±20	Post-bomb NH2 2013: 1968-1968 cal AD (5.1%) 1968-1970 cal AD (58.2%) 1970-1970 cal AD (4.9%)	Post-bomb NH2 2013: <u>1968-1970 cal AD (95,4%)</u>		
試料No.SD-23 S-1 GL-0.66m	PLD-39520	木の表皮	-28.54±0.17	77±20	75±20	Post-bomb NH2 2013: 1700-1702 cal AD (1.6%) 1707-1719 cal AD (13.3%) 1819-1824 cal AD (4.0%) 1825-1833 cal AD (7.8%) 1881-1915 cal AD (41.3%) 1954-1955 cal AD (0.3%)	Post-bomb NH2 2013: 1695-1727 cal AD (24.4%) 1812-1838 cal AD (17.9%) 1841-1854 cal AD (4.2%) 1858-1861 cal AD (0.6%) <u>1867-1918 cal AD (47.8%)</u> 1954-1955 cal AD (0.5%)		
試料No. SD-24 S-1 GL-0.78~ 0.80m	PLD-39521	土壤	-23.28±0.32	960 ± 25	960 ± 25	1025-1047 cal AD (24.3%) 1089-1122 cal AD (34.8%) 1139-1148 cal AD (9.0%)	1021-1059 cal AD (30.9%) <u>1065-1155 cal AD (64.5%)</u>		
試料No. SD-25 S-2 GL-0. 25m	PLD-39522	木片	-25.60±0.22	145±23	145±25	Post-bomb NH2 2013: 1678-1695 cal AD (10.2%) 1726-1765 cal AD (23.1%) 1772-1777 cal AD (1.9%) 1870-1813 cal AD (8.1%) 1837-1842 cal AD (2.3%) 1853-1867 cal AD (6.5%) 1874-1875 cal AD (0.5%) 1918-1940 cal AD (14.2%) 1952-1954 cal AD (1.4%)	Post-bomb NH2 2013: 1669-1707 cal AD (15.8%) <u>1719-1781 cal AD (30,7%)</u> 1798-1826 cal AD (11.3%) 1832-1887 cal AD (19.3%) 1913-1946 cal AD (16.7%) 1951-1954 cal AD (1.6%)		
試料No.SD-26 S-3 GL-0.4m	PLD-39523	葉	-26.68±0.32	183±25	185 ± 25	Post-bomb NH2 2013: 1666-1682 cal AD (14.0%) 1737-1756 cal AD (14.5%) 1762-1783 cal AD (19.7%) 1796-1803 cal AD (6.2%) 1937-1952 cal AD (13.8%)	Post-bomb NH2 2013: 1658-1691 cal AD (19.2%) <u>1729-1810 cal AD (55.5%)</u> 1921-1923 cal AD (0.3%) 1924-1954 cal AD (20.4%)		

表-2 採取試料の放射性炭素年代結果と暦年較正結果

yrBP :1950年を基点とした換算年代値

Post-bomb NH2 2013:較正曲線データにPost-bomb NH2を用いた較正年代.表記のない年代は,較正曲線データにIntCall3を用いた. 下線を記した暦年較正年代を,本論では採用.

4.2.2 地層の年代分析結果

今回, S1地点とため池のd地点の露頭で,土石流堆積 物起源の砂層を確認したことから,この年代を特定する ために,堆積物中の試料の¹⁴C年代を測定した.ため池 の堆積物は,木片や有機質土を多く含むが,堆積した年 代を精度よく測定するため,再堆積の可能性が少ない試 料をサンプリングした.

写真-5 および図-5(d) に示すように、土石流堆積物は 側部で層厚が変化するが、その上端部直上の GL-0.75m の試料(d地点の側部の層厚変化部で採取)と、その下 端部の GL-0.8mの試料年代から、1975~2001年の間に形 成されたものと推測される.GL-0.5mの年代値は、下位 の地層の年代よりも古いため、これは年代の古い試料が 流れ込んで混じったものと考えられる.

年代測定結果をみると, S1~S3 地点および d 地点の試 料の年代は,それぞれ 1065~2008 年 (S1),1719~1781 年 (S2),1729~1810 年 (S3) および 1956~2001 年 (d 地点露頭)であった.S2,S3 地点のシルト混り砂および 礫混り粘性土の年代が古いのは,これらの地点の標高が 0.4~0.7m低く,S1 と d 地点の露頭よりもより深部まで 採取されたためと考えられる.また,S1 の GL-0.65m 以 深で観察される地層は他と比べて古い.より深部の試料 を採取できなかったので,詳細なことは不明であるが, その上位の地層に比べ腐植物の含有が少なく,砂や礫分 を多く含むことから,本層はため池の基底部を構成する

堆積物の可能性が考えられる.

また,写真-3 に示す総頭川左岸渓岸部の地層について は、上位土石流堆積物の年代は、SD-1 と SD-7 の年代か ら 1391-1480 年と推定され、下位の土石流堆積物は、1391 年以前と推測される.砂質土層は、礫分は少ないが、上 方細粒化傾向を示し土砂流による堆積物の可能性があり、 その年代は SD-2 の結果から、1763-1801 年と推定される. SD-4 は、支流側のため池の下層縁辺部を構成する粘性土 中の試料であり、その年代は 1413-1448 年である.

4.2.3 土質試験結果

表-3に、ため池の堆積物の物理特性と深度変化を把握 するため実施した土質試験の一覧表を示す.これを見る と、粘性土の土粒子の密度は2.369~2.543g/cm³程度と低 い値が多い.これは、ため池内での調査であったことか ら、有機物を多く含む湖沼性の堆積物が主体であったた めと考えられる.一方、礫質土は、2.512~2.608g/cm³で、 一般的な土砂の値に近い値を示し、支川からの流入土砂 起源と推測される.

ここで, S1'の GL-0.23~0.40m, GL-0.45~0.65m と S3'の GL-0.21~0.30m, GL-0.37~0.48m において, 類似 の砂質粘土層が分布するため,これらの地層の粒度特性 を検討した. 図-6 と図-7 に S1'と S3'の試料の粒径加積 曲線をそれぞれ示した. 各図において比較した二つの粒 径加積曲線は,多少の粒度組成の違いはあるが同様の傾 向を示すことから,これらの地層は同じ層準に対比でき ると考えられる.

	採取地点	坂町総頭川									
	試料番号		S1'			S2	S3'				
1	深度(GL−m)	0.0 ~0.15	0.15 ~0.23	0.23 ~0.40	0.40 ~0.45	0.45 ~0.65	0.00 ~0.22	0.06 ~0.15	0.21 ~0.30	0.30 ~0.37	0.37 ~0.48
3	上粒子の密度 ρ _s (g/cm ³)	2.512	2.441	2.392	2.608	2.543	2.609	2.549	2.369	2.577	2.535
自	然含水比Wn(%)	33.9	95.5	124.8	14.5	84.2	19.8	37.9	153.7	36.5	98.4
強	熱減量Li(%)			16.5		8.9					
	礫分(%)	35	1	0	60	2	46	35	1	31	1
	砂分(%)	54	47	17	33	27	49	52	14	45	10
÷L.	シルト分(%)	5	32	57	3	56	4	7	66	14	66
粒度	粘土分(%)	6	20	26	4	15	1	6	19	10	23
	最大粒径 (mm)	9.5	4.75	2	19	9.5	4.8	19.0	4.75	19.0	9.5
	均等係数Uc	25.6	-	-	26.5	-	11.3	49.4	-	190.9	-
	分類名	細粒分混 り 礫質砂	砂質 粘性土	砂質 粘性土	細粒分混 り 砂質礫	砂質 粘性土	礫質砂	細粒分混 り 礫質砂	砂混り 粘性土	粘性土質 礫質砂	砂混り 粘性土
	分類記号	SG-F	CsS	CsS	GS-F	CsS	SG	SG-F	Cs-S	SCsG	Cs-S

表-3 採取試料の土質特性

4.3 広島県の土石流発生年表

図-8 は既往研究³⁰ならびに本研究で実施した土石流 堆積物の¹⁴C 年代値を土石流災害発生年表としてまとめ たものである.本研究で明らかになった総頭川支川のた め池に流入した土石流堆積物の年代値は,その上位と下 位に分布する地層の年代から 1975~2001 年と推定され る.坂町史⁶では明治 40 (1907) 年,大正 12 (1923) 年,昭和20(1945)年に土石流の記録があった事が記 されている.この3つの土石流の記録は,堆積物では未 確認であるが,表-1によると,広島周辺地域では,昭 和42(1967)年7月,昭和47(1972)年7月,昭和6

図-7 粒径加積曲線 (S1'の GL-0.45~0.65m と S3'の GL-0.37~0.48m)

3 (1988) 年6月, 平成5 (1993) 年7月, 平成11 (1999) 年6月, 平成13 (2001) 年3月に土砂災害が発生してい る. このうち, 昭和42 (1967) 年7月の災害は, 呉市周 辺で発生した豪雨災害⁷⁾ であり被災区域が坂町に近く, その時期に形成された可能性を検討したが, 地層の年代 はそれより新しいため, 災害発生場所も考慮すると, 平 成11 (1999) 年6月の可能性が考えられる.

また、本調査で見出された 1975-2001 年に発生した土 石流堆積物が、図-8 中の No.7 に対比される災害である と考えると、その約 10 年経過後の 2018 年 7 月豪雨災害 が発生したと推定される.一方、2014 年 8 月豪雨災害で 被災した可部東地区においても、直近の土石流イベント から約 10 年後に再来している.このようにみると、最近 の広島市周辺地域では、松木ら³⁰⁾ が近世以前(図-8 の No.6 以前)の堆積物や史料から推定した土石流の発生間 隔(150~400 年)よりも短い間隔で発生している傾向に あることがわかる.つまり、近世以後、広島周辺地域の 土石流の発生頻度が高まってきたことが推察される.次 章では、自治体史に基づき明治以後の土砂災害の様相を 紹介すると共に、発生間隔の変容について検討する.

5. 自治体史の調査結果と考察

5.1 坂町の文献調査

坂町で起きた過去の災害を調べるため、「坂町史」のを 調査した.坂町史-通史(考古〜近代編)の174と175頁 には「明治40年7月は雨の日が多く、2日に1日は雨が 降っていた.13日以降は止むことなく、14日は一層激し

図-8 広島県の土砂災害発生年表(松木ら³⁰⁾の図面に本研究の結果を追加した)

く降った.」「15日,午前4時過ぎ勢いが増し,5時頃から東西も分からないほどの豪雨.」「総頭川など,各所が山崩れと洪水で,破壊され,巨岩,大岩,砂と共に押し流され,家も田畑も飲み込まれた.」「天地川,山が近くに聳えており,土地が急勾配,突然の豪雨で,河川がたちまち氾濫,水害.」「奥海田町では,山崩れによる鉄砲水で,八木地区が全壊している.」と示されている.また,同史178頁には「大正12年7月12日,午前2時ごろから豪雨,朝5時ごろ森浜の山が大音響とともに崩落.」

「小屋浦地区,午前3時半ごろ小屋浦山がすさまじい大 音響とともに崩落し,午前2時ごろから4時の間に田畑 全部が浸水.」と記述されている.このことから,坂町で は明治40年と大正12年に,土砂洪水氾濫の様相を呈す る土石流災害が発生していたことが分かる.

5.2 広島湾沿岸地域の文献調査から見える土砂災害史

西本 ⁵による先駆的研究によって,近年の広島湾沿岸 地域における土石流災害の概況が調査されている.筆者 らは,広島湾沿岸地域の自治体史 ⁶⁻²⁸を基に ¹⁴C 年代測 定結果と史料に残された災害記録との照合を行った(図 -9).図中では,3市町村以上において被害記録があった 豪雨を黒のハッチングで示している.

この図を見ると、枕崎台風は多数の市町村に被害を与 えていたことが分かる.その原因について、呉市史第七 巻²⁰⁾の180頁には「この被害の直接の原因は,はげしい 豪雨による洪水、山腹の崩壊による. ほとんどの人々が この台風の接近を知らず水害にたいし無防備であったこ と,水害の発生時刻が寝入った直後であったことなどが より多数の死者を出すことにつながったといえよう.太 平洋戦争開戦と同時に気象観測値や天気予報などの一般 への発表は禁止され、この報道管制は終戦にともない昭 和二〇年八月二一日に解除されてはいるが、台風の進路 にあたる各測候所や地方気象台が空襲や艦砲射撃などに よって観測器が破壊され観測不能の状況になっていた. と記述されている.また、廿日市町史通史編(下)^{23)の} 559 頁には「この枕崎台風の大きな被害は、主として豪 雨による山崩れと河川の氾濫によるものであった。その 原因は,長い戦争によって治山治水がおろそかとなり, また山林の乱伐がおこなわれた結果によることは明らか である. | と記されている. また, 江田島町史²⁵⁾の 294 頁 には「この災害の原因は、山々の大木が伐採され、また、 海軍水源地の工事あるいは高射砲台の構築などで山を切 り開き道路が造られ、その土砂のため被害がいっそう甚 大になっていたものと思われる.」と記述されている.

広島湾沿岸地域では、豪雨による被災地域は少しずつ 異なることや、局地的な豪雨の発生など降雨条件によっ ても左右されるため、土砂災害の発生間隔については 様々な解釈があると考えられる.ここでは、同図に矢印 で示された被害の大きい代表的な土砂災害の発生間隔を みると、19年、2年、17年、22年、32年となっており発 生間隔に数年~数10年の揺らぎがみられる.近年に起き

図-9 広島湾沿岸地域における自治体史から抽出した 土砂災害記録(文献⁵⁾を基に再構成した)
(図中の丸数字は1大竹市,2廿日市町,3戸坂村, 4五日市町,5沼田町,6祇園町,7可部町,8安芸町, 9府中町,10畑賀村(瀬野川町),11海田町,12矢野町, 13坂町,14江田島町,15大柿町,16倉橋町,17呉市に 対応する).

た1999年6月豪雨,2014年8月豪雨と2018年西日本豪 雨をここに加えると、15年、4年の間隔で起きていたこ ととなる.このことから、大規模な土砂災害の少ない32 年あまりの静穏期(減少期)を経て、地域住民の間では 大雨で土砂災害や河川氾濫に見舞われるという危機感は 薄れていると思われる.最近では、数年の間隔で豪雨災 害があったように極端な気象現象にあう機会も増えてお り、土砂災害が多発する時期に入っているとの認識のも と、今後は土砂災害に対してより一層警戒する必要があ ると考える.

6. 結論

本研究で明らかにした広島湾沿岸地域の過去の土石流 発生時期について以下にまとめる.

- (1) 広島湾沿岸地域は地質条件を見ると非常に土石流の 発生しやすい条件を持っていることが分かった.ま た,広島湾沿岸地域の自治体史を読み解くと,各自治 体に土石流災害を受けた記録が数多く残っているこ とが分かった.
- (2) 坂町では、坂町史より明治40年、大正12年、昭和20年に土石流が発生していたことが分かった.また、総頭川では、西暦1400年以前、1430~1480年頃、1800年頃の3回の土石流堆積物が確認された.ため池の堆積物の年代測定結果から、1975年~2001年の間に形成された土石流性の堆積物を確認し、これは1999年の豪雨によって形成された可能性がある.
- (3) 広島湾沿岸地域の災害の長期的発生間隔を調べると、 同一渓流での土石流は、150~400 年程度の間隔で発 生しており、坂町総頭川においても発生時期は異な

るが同様の間隔であった.

(4) 今回の現地調査結果に加え、広島湾沿岸地域全体の 災害記録から土砂災害の発生間隔を見ると、今後は 32 年の減少期を経て、土砂災害の多発期となる可能 性を見据えた対策が必要と考えられる。

謝辞

現地調査の実施にあたり国土交通省広島西部山系砂防 事務所にご協力いただいた.西本宏氏(元 広島県土木建 築局)には非常に有益な情報ならびに資料を提供いただ いた.本研究室の西山健太氏と鯨田宏樹氏(現 国土交通 省)には,現地調査および室内試験で助力いただいた. なお,本研究は科研費基盤研究(A)(鈴木素之,19H00785), 同挑戦的研究(萌芽)(鈴木素之,17K18954),中国建設 弘済会平成 30 年度技術開発支援事業の研究助成の一部 あるいは全部を使用して実施したものである.ここに記 して,関係各位に対して謝意を表す次第である.

参考文献

- 阪口和之,鈴木素之,楮原京子,松木宏彰,金折裕 司,櫻井正明,片岡知:山口県防府市石原地区にお ける土石流の発生頻度とその堆積物特性,地盤工学 ジャーナル, Vol.13, No.3, pp.237-247, 2018.
- 広島県砂防課:土砂災害ポータルひろしま 過去の 主な土砂災害, https://www.sabo.pref.hiroshima.lg.jp/portal/sonota/saigai/002dosya.htm (2020 年 5 月 5 日閲覧).
- 国土交通省:砂防 都道府県別土砂災害危険箇所, http://www.mlit.go.jp/river/sabo/link20.htm (2020 年 5 月 5 日閲覧).
- 4) 国土地理院: 平成 30 年 7 月豪雨に関する情報 空 中写真(1) 垂直写真[2] 広島坂町地区(広島県広島 市・呉市・安芸郡坂町など), https://maps.gsi.go.jp/#11/34.343368/132.504572/&base =std&ls=std%7C201807H3007gouu_sakachou_0709sui choku%7C201807H3007gouu_sakachou_0711suichoku &disp=111&lcd=201807H3007gouu_sakachou_0711sui choku&vs=c0j0h0k010u0t0z0r0s0m0f0&d=v1(2020 年 5 月 5 日閲覧).
- 5) 西本宏:広島湾岸地域における土石流災害について, 広島大学総合科学研究科修士論文, 50p., 2017.
- 6) 坂町史編さん委員会:坂町史-通史(考古~近代編),

pp.174-178, 2013.

- 7) 広島県: 呉市の 42 年災害, 41p., 1975.
- 8) 安芸町誌編纂委員会:安芸町誌 下巻, pp.260-263, 1975.
- 広島県安芸郡海田町:海田町史-通史編, pp.10-17, 1986.
- 10) 広島市役所: 沼田町史, p.16, 1980.
- 11) 府中町史編修委員会:安芸府中町史-通史編, 314p., 1979.
- 12) 大竹市役所:大竹市史-本編- 第二巻, pp.145-151, 1970.
- 13) 広島県大柿町:大柿町史, p.137, 1994.
- 14) 広島県広島市: 戸坂村史, pp.308-309, 1991.
- 15) 野村直助: 倉橋島志, pp.26-29, 1909.
- 府中町史編さん専門委員会:安芸府中町史-資料編, pp.543-545, 1977.
- 17) 広島市役所:可部町史, pp.791-792, 1976.
- 18) 呉市史編纂委員会:呉市史-第五巻, p.244, 1987.
- 19) 呉市史編纂委員会:呉市史-第六巻, p.1091, 1988.
- 20) 呉市史編纂委員会:呉市史-第七巻, pp.176-183, 1993.
- 21) 祇園町誌編纂委員会:祇園町誌 , pp.18-32, 1970.
- 22) 五日市町誌編集委員会:五日市町誌(下巻), pp.151-155, 1983.
- 23) 廿日市町:廿日市町史-通史編(下), pp.157-559, 1988.
- 24) 矢野町町史編纂委員会:広島県矢野町史下巻, pp.90-93, 1961.
- 25) 江田島町: 江田島町史, pp.294-296, 1982.
- 26) 廿日市町:廿日市町史-通史編(上), p.31, 1988
- 27) 田村信三: 地誌広町, 広郷土史研究会, 619p., 1967.
- 28) 広島市役所: 瀬野川町史, pp.19-321, 1980.
- 29) 鈴木素之,片岡知,西山健太,松木宏彰,阪口和之, 後藤聡,神谷知佳,海原荘一:長野県南木曽町梨沢 周辺における土石流発生履歴,Kansai Geo-Symposium 2019-地下水地盤環境・防災・計測技術 に関するシンポジウム論文集-,pp.292-296,2019.
- 30) 松木宏彰, 鈴木素之, 楮原京子, 阪口和之, 小笠原 洋, 片岡知:広島市安佐南区と安佐北区周辺地域の 土石流堆積物の状況と土石流の発生頻度, 地盤工学 ジャーナル, Vol.13, No.4, pp.403-421, 2018.

(2020年6月24日 受付)