地盤と建設 Vol. 5. No. 1. 1987

## 圧密過程中の応力やひずみの挙動

BEHAVIOR OF STREES AND STRAIN DURING CONSOLIDATION

熊 本 直 樹\* (Naoki Kumamoto) 吉 国 洋\*\* (Hiroshi Yoshikuni)

キーワーズ:圧密/<u>応力</u>/沈下/粘性土/バーチカルドレーン/<u>ひずみ</u>/有効応力(IGC:D5)

1. まえがき

圧密に関する解析的研究では、間隙水圧や体積ひずみなどの方向性を持たない量や、境界面の応力や変位 に着目することが多く<sup>11</sup>、粘土内部の応力やひずみの挙動はあまり言及されていない。しかし、間隙水圧の 挙動が同じでも、応力経路が異なる例がしばしば見られる。例えば立方体の圧密を考えると、立方体の側面 の変位を拘束して上端面に荷重を作用させ、上端面からのみ排水させる形式の圧密は、いわゆる一次元圧密 で、線形弾性を仮定すれば間隙水圧を未知数とした熱伝導型の圧密方程式で表わされる。このとき、任意点 の応力はK。線上を通過し、この形式の圧密は「K。圧密」と呼ばれている。ところが、境界面の変形条件 を同じにしても(境界面の側方変位を拘束、上端面に載荷)、排水を側面からのみに変更すると、間隙水圧 や体積ひずみで表わされた圧密方程式は上記「K。圧密」と全く同じになるが、立方体内部の応力やひずみ の挙動は全く異なる。その一例が、著者らがバーチカルドレーン打設地盤を有限要素法で解析するときによ く用いている壁状のドレーンによる圧密で、参考文献2)に示したように、壁状ドレーンに近いところ、すな わち排水面近傍では、圧密初期に等方応力が増加し、そのあと偏差応力が増加する。したがって、この形式 の圧密は、外見上は境界面の側方変位がなく、上端面のみが沈下するので、一般にはK。圧密と呼ばれてい るが、立方体内部の任意点の応力はK。線上は通過しない。

また、三軸圧密試験においては、円柱周面から排水させることが多いが、このときの円柱内部の応力の挙 動も複雑である。例えば、円柱の周面の側方変位を拘束して、上端面のみを沈下させ、周面からのみ排水さ せる試験を「K。圧密試験」と称してしばしば実施されているが、実際には粘土内部の応力はK。線上を通 過せず、真の意味のK。圧密試験ではないことが指摘されている。同様に、バーチカルドレーンによる圧密 (中空円柱の圧密)でも、境界面の変形方向と排水方向とが異なるために、K。圧密と呼ばれている変形条 件のときでさえ、中空円柱内部では応力やひずみが複雑に変化する。

著者らは、立方体の圧密、球の圧密、円柱の圧密および中空円柱の圧密を、文献1)、3)、4)、5)などで論 じているが、これらはいずれも間隙水圧、体積ひずみあるいは境界面の変位や応力に着目したものであった。 そこでこの論文は、以下の事柄を明らかにすることを目的とする。第1の目的は、圧密過程中の粘土内部の 成分やひずみの成分を、具体的に示すことである。第2の目的は、上記の現象、すなわち圧密方程式は一次 元圧密(K。圧密)と同じになり、また、外見上は(境界面は)一次元的変形しかしないのに、応力やひず みの挙動が複雑になるメカニズムを明らかにすることである。

この研究は解析的に行うので、数学的取扱いを簡単にするために、粘土骨格は線形弾性と仮定し、透水係 数も圧密過程中一定とする。このような仮定は実際の粘土に対しては十分認められるものではないが、排水 方向によって応力やひずみの挙動が変化するメカニズムは十分知ることができる。

| *  | 三菱重 | L業株式会社 | : 技術 | 本部 広 | 島研究所 | 鉄構・ | 土木 | 开究室 |
|----|-----|--------|------|------|------|-----|----|-----|
| ** | 工博. | 広島大学   | 教授   | 工学部  | 第四類  |     |    |     |

2. 非回転変形を伴う圧密の方程式とその解

応力やひずみの解を示す前に、間隙水圧および体積ひずみの解を示しておく。粘土骨格の応力ひずみ関係 は等方線形弾性とし、微小ひずみの仮定を置く。また、Darcy則が成立するものとし、透水係数は圧密過程 中一定とする。さらに、粘土の完全飽和、および粘土粒子・間隙水圧の非圧縮性の仮定を置く。このとき、 圧密を静的とみなし、粘土の自重の影響を無視すると、圧密は次の方程式で表わされる<sup>60</sup>。

 $\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{c}_{\mathbf{v}} \nabla^2 \mathbf{u} + \frac{\partial \varphi}{\partial \mathbf{t}}$ grad  $\varphi = \mu \operatorname{rot} \omega$ ここで, u, t, cv, P<sup>2</sup>はそれぞ れ, 間隙水圧, 時間, 圧密係数, U zo Laplacian である。圧密係数 c v は  $c_{v} = \frac{k}{\tau_{w}} (\lambda + 2 \mu) = \frac{k}{\tau_{w} m_{v}}$ である。ここで, k, rw, mvは それぞれ,透水係数,間隙水の単位 体積重量,体積圧縮係数であり, λ, uはLaméの定数である。また、9は (上端面のみ排水面) (b) 球の 圧 「圧密応力」であり、次式で定義さ (a) 立方体の圧密 家 れる。  $\varphi = (\lambda + 2 \mu) e_v + u \cdots (3)$ 7 = 0ここで, ev は体積ひずみである。 式(2)のωは  $\omega = \operatorname{rot} u$  (4) である。ここで、 uは変位ベクトル である。いま、変形を、rot u = 0、  $Z = H_{-}$ すなわち非回転に限定すると、式(2) do = 2ron = re/ruから分かるように, grad  $\varphi = 0$ と ż (d) 中空円柱の圧密 なり、圧密応力 9 は位置的には定数 (c) 円柱の圧密 で,時間のみの関数になる。文献1), 3), 4), 5)などに示しているように, 図1 立方体、球、円柱および中空円柱の座標

| <i>a</i> . p   | 既知                                                 |        |                                                                |                                                                           |                                         |
|----------------|----------------------------------------------------|--------|----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|
| <b>庄密形式</b>    | 立方体                                                | 球      | 円 柱                                                            | 中空円柱                                                                      | trikking ki                             |
| 等方压密           | $p_s = \overline{p_s} = \overline{p_y} = p$        | р      | $p_r = \overline{p_r} = p$                                     | $p_{re} = p_{rw} = \overline{p_e} = p$                                    | $\frac{2(1-2\nu)}{1+\nu}$               |
| Ko圧密(p,既知型)    | $p_{s} = p$ $U_{sL} = 0,  U_{yL} = 0$              |        | $\overline{\mathbf{p}_{r}} = \mathbf{p}$ $\mathbf{U}_{r0} = 0$ | $\frac{\overline{p_r} - p}{U_{re} - 0},  U_{re} = 0$                      | 0                                       |
| <i>ε,</i> =0圧密 | $\overline{p_x} = \overline{p_y} = p$ $U_{z0} = 0$ | i<br>i | p <sub>r</sub> == p<br>U <sub>10</sub> == 0                    | $p = \frac{n^2}{n^2 - 1} p_{re} + \frac{-1}{n^2 - 1} p_{rw}$ $u_{t0} = 0$ | <b>1-2</b> 2                            |
| 中空押し広げ型圧密      |                                                    |        | vi <del>li e c</del> ej                                        | $\begin{array}{c} p_{rw} = p\\ u_{s0} = 0, \ u_{re} = 0 \end{array}$      | $\frac{(n^2-1)(1-2\nu)}{(1-2\nu)n^2+1}$ |

表1 圧密形式と圧密荷重 p 及び係数α

ure; 円柱周面の半径方向変位, ure, urv; 中空円柱外周面および内周面の半径方向変位, n=re/rv re; 中空円柱外周半径, rv; 中空円柱内周半径

非回転変形を伴う圧密の圧密応力
9は  $\varphi = (1 + \alpha) \mathbf{p} - \alpha \overline{\mathbf{u}} \tag{5}$ という形で表わされる。ここで、αはポアソン比νの関数で、土塊の変形条件によって定まる係数である。 この係数αは, 圧密応力βの増加率を意味する。また, pは  $\mathbf{p} = \mathbf{F}_{\mathbf{x}} \mathbf{p}_{\mathbf{x}} + \mathbf{F}_{\mathbf{y}} \mathbf{p}_{\mathbf{y}} + \mathbf{F}_{\mathbf{z}} \mathbf{p}_{\mathbf{z}} \tag{6}$ という形で表わされる。ここで、 p x 、 p y 、 p z は土塊の境界面に作用させる荷重であり、 F x 、 F y 、 F & は変形条件によって定まる係数である。荷重 p が時間的に一定で,非回転変形を伴う圧密の方程式は, 式(1) および式(5) から次のようになる。  $\frac{\partial u}{\partial t} = c_v \nabla^2 u - \frac{\alpha}{V} \frac{d}{dt} \int_V u dV$ ----- (7) ここで, V は土塊の体積である。ζを位置,τを時間を表わす関数とするとき,式(7)の解は一般に  $U = \sum_{i=1}^{\infty} C_i \left( D_0(\lambda_i \zeta) - D_0(\lambda_i \zeta) \right) |_{\zeta = \zeta_P} \exp\left(-\lambda_i^2 \tau\right)$ (u。:初期間隙水圧)  $ZZ = U = u / u_0$ く。: 排水面 λ<sub>i</sub> :固有値

という形で表わされる。また体積ひずみ e v は

$$\frac{\mathbf{e}_{\mathbf{v}}}{\mathbf{e}_{\mathbf{v}\mathbf{f}}} = 1 - \sum_{i=1}^{\infty} C_i D_0(\lambda_i \zeta) \exp(-\lambda_i^2 \tau) \qquad \dots$$

という形で表わされる。ここで、 evrは最終体積ひずみである。

次に、具体的に解を示す。図1に 示すように、立方体、球、円柱およ び中空円柱の圧密を考える。立方体 は、1辺の長さをしとし、上面のみ を排水面とする。横方向にx、y座 標をとり、鉛直方向にz座標をとる。 球の半径はr。で表し、半径方向に r座標をとる。そして、球の表面を 排水面とし、等方的な荷重pを表面 に作用させる。円柱の半径はr。で、 半径方向にr座標をとり、周面を排 水面とする。中空円柱の内・外周面 の半径はそれぞれrw、reで、半



····· (9)

| 轰 3 | 圧密形式と座標く, | 関数Do(li | ζ), | 排水面の位置く。 | , 時間 τ, | 固有値 / i |
|-----|-----------|---------|-----|----------|---------|---------|
|     |           |         |     |          |         |         |

| $\smallsetminus$ | 1 | *                           | D (1 1)                                                                                             | *   | े <sup>36</sup> र |                     |                                                                                                                 |  |
|------------------|---|-----------------------------|-----------------------------------------------------------------------------------------------------|-----|-------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|--|
|                  | ζ | 定義                          | $D_0(\lambda_i \zeta)$                                                                              | \$p | τ                 | Tの定義                | Alexandra Alexandra de la companya d |  |
| 立方体の圧密           | Z | r<br>L                      | $\frac{1}{\lambda_{\perp}} \frac{\alpha}{1+\alpha} \cos \lambda_{\perp} Z + \sin \lambda_{\perp} Z$ | 0   | Т                 | $\frac{Cvt}{L^2}$   | $(1+\alpha)\lambda\cos\lambda - \alpha\sin\lambda = 0$ の根                                                       |  |
| 球の圧密             | R | $\frac{r}{r_0}$             | $\frac{\sin\lambda_i R}{\lambda_i R}$                                                               | 1   | Т                 | $\frac{Cvt}{r_0^2}$ | $\left(1-\frac{1+\alpha}{3\alpha}\lambda^2\right)\tan\lambda-\lambda=0$ の根                                      |  |
| 円柱の圧密            | R | Tro                         | $J_{o}(\lambda_{i}R)$                                                                               | 1   | Т                 | $\frac{Cvt}{r_0^2}$ | $J_{0}(\lambda) - \frac{2\alpha}{1+\alpha} \cdot \frac{1}{\lambda} \cdot J_{1}(\lambda) = 0$ の根                 |  |
| 中空円柱の圧密          | R | $\frac{\Gamma}{\Gamma_{w}}$ | $J_{o}(\lambda R) - \frac{J_{1}(\lambda n)}{Y_{1}(\lambda n)} Y_{o}(\lambda R)$                     | 1   | 4n²T              | $\frac{Cvt}{d_e^2}$ | $D_{o}(\lambda) + \frac{2\alpha}{(1+\alpha)(n^2-1)\lambda} D_{1}(\lambda) = 0$ の根                               |  |

J.Y:Bessel関数 n=re/re de=2re D1:DoでJ0, YoをJ1, Y1と置いたもの

径方向にr座標をとる。また、内周面のみが、排水面である。

これらの圧密応力  $\mathcal{P}$  は、前述のように、式(5) で与えられるが、圧密荷重 p および  $\alpha$  は表1に示すとおり である。また、間隙水圧U (=u/u<sub>0</sub>) は式(8) に示すとおりであるが、C<sub>i</sub>,  $\lambda_i$ ,  $\zeta$ , D<sub>0</sub>( $\lambda_i$   $\zeta$ ),  $\zeta_p$ , τ は表2 および表3 に示すとおりである。また、体積ひずみ e v も式(9) および表2, 表3 から、具体的に 定めることができる。なお、中空円柱の圧密で n という記号が用いられているが、これは中空円柱の外径と 内径の比(つまり、n=de/dw=re/rw)である。

3. 圧密過程中の応力やひずみ

3.1 立方体の圧密

T

図1(a)に示す立方体(排水方向はz方向のみ)の場合,ひずみは式(10)~式(12)で与えられる。

$$\varepsilon_{x} = \overline{\varepsilon}_{x} = \frac{u_{xL}}{L}$$
(10)  

$$\varepsilon_{y} = \overline{\varepsilon}_{y} = \frac{u_{yL}}{L} = \varepsilon_{x}$$
(\therefore u\_{xL} = u\_{yL}) (11)  

$$\overline{\varepsilon}_{z} = \frac{u_{z0}}{L}$$
(12)

ここで、 $u_{xL}$ ,  $u_{yL}$ ,  $u_{z0}$ はそれぞれ、x=L, y=L, z=0 の面の変位である。なお、x=0, y=0, z=L の面の変位は0 としている。  $\varepsilon_z$  については平均値しか与えられていないが、任意点の  $\varepsilon_z$  は

$$\varepsilon_{z} = e_{v} - (\varepsilon_{x} + \varepsilon_{y}) = e_{v} - \frac{2 u_{xL}}{L}$$
(13)

で与えられる。体積ひずみ e v は式(9) で与えられているので, ε z は, 次のようになる。

$$\varepsilon_{z} = e_{vf} - \frac{e_{vf}}{1+\alpha} \sum_{i=1}^{\infty} C_{i} \left( \frac{\cos \lambda_{i}}{\sin \lambda_{i}} \cos \lambda_{i} Z + \sin \lambda_{i} Z \right) \exp\left(-\lambda_{i}^{2} T\right) - \frac{2 u_{xL}}{L} \qquad (14)$$

つまり、 $u_{xL}$  (= $u_{yL}$ ) が判明すれば、式(10)、式(11)および式(14)から任意点のひずみ $\varepsilon_x$ 、 $\varepsilon_y$ および  $\varepsilon_z$  を求めることができる。 $\varepsilon_x$ 、 $\varepsilon_y$ 、 $\varepsilon_z$  が求まれば、式(15)から任意点の応力 $\sigma'_x$ 、 $\sigma'_y$ 、 $\sigma'_z$  が定まる。

 $\left.\begin{array}{l}
\sigma'_{x} = (\lambda + 2\mu) \varepsilon_{x} + \lambda (\varepsilon_{y} + \varepsilon_{z}) \\
\sigma'_{y} = \lambda \varepsilon_{x} + (\lambda + 2\mu) \varepsilon_{y} + \lambda \varepsilon_{z} \\
\sigma'_{z} = \lambda (\varepsilon_{x} + \varepsilon_{y}) + (\lambda + 2\mu) \varepsilon_{z} \\
\end{array}\right\}$ (15)

〈等方圧密の場合〉

$$u_{xL} = \frac{1-\nu}{1+\nu} m_v p L \overline{U}_d = \frac{1-2\nu}{E} p L \overline{U}_d \qquad (16)$$

〈 s z = 0 圧密の場合〉

$$u_{xL} = (1 - \nu) m_{\nu} p L \overline{U}_{d} = \frac{(1 + \nu) (1 - 2\nu)}{E} p L \overline{U}_{d}$$
(17)

〈pz 既知型Ko 圧密の場合〉

 $u_{xL} = 0$ (18)
なお、式(16)~式(18)で用いている  $\overline{U}_{a}$  は平均圧密度で、具体的には式(8)を用いて、次のようになる。  $\overline{U}_{a} = 1 - \overline{U} = 1 - \sum_{i=1}^{\infty} C_{i} \frac{1}{\lambda_{i}} \left( \frac{1}{\lambda_{i}} \frac{\alpha}{1+\alpha} (\sin \lambda_{i} - \lambda_{i}) - \cos \lambda_{i} + 1 \right) \exp(-\lambda_{i}^{2}T)$ (19)

 $U_{4} = I = U_{-1} = I_{-1} = I_{-1$ 

なお,蛇足ながら,壁状ドレーンによる圧密の応力やひずみについても考えてみる。柱状のサンドドレーンの理想的なモデルとして内外周面の側方変位を拘束した中空円柱を考えることと同様に,壁状ドレーンによる圧密の理想的なモデルを,境界面の側方変位を拘束した立方体の圧密としよう。そして, x = 0の面の

みを排水面とする。さらに、壁状ドレーンの場合 は平面ひずみ条件となるので、立方体内部におい ても ε<sub>y</sub> = 0 である。つまり、外見(すなわち境 界面の変形条件)は図1の立方体のp₂既知型K。 圧密と全く変わらず、排水方向がx方向のみに変 わっただけの変形・排水条件のものが、壁状ドレ ーンの理想モデルの圧密である。この圧密では排 水方向がx方向であるので、

|   | $\varepsilon_z = \overline{\varepsilon}_z = u_{z0} / L$              | (20) |
|---|----------------------------------------------------------------------|------|
|   | $\varepsilon_{\mathbf{y}} = \overline{\varepsilon}_{\mathbf{y}} = 0$ | (21) |
|   | ε <sub>x</sub> = 0                                                   | (22) |
| で | ある。したがって,平均体積ひずみ e v                                                 | は    |
|   | $e_y = e_z = e_z$                                                    | (23) |

であるが、任意点の体積ひずみevは

 $e_v = \varepsilon_x + \varepsilon_z = \varepsilon_x + \overline{e_v}$  (24) である ( $\overline{\varepsilon_x} = 0$ ではあるが、 $\varepsilon_x \neq 0$ であるこ とに注意されたい。これを間違うと、Barronと同 じ誤ちをおかすことになる)。

この壁状ドレーンの圧密では、 $u_{xL} = u_{yL} = 0$ であるので、係数  $\alpha$  は 0 になる。そして、排水方 向が x 方向のみであるので、圧密方程式は

 $\frac{\partial u}{\partial t} = c_v \frac{\partial^2 u}{\partial x^2} \qquad (25)$ 

となる。つまり、図1の立方体のK。圧密のzが xに変わるだけで、圧密方程式の形は全く同じに なる。したがって、式(8)および式(9)に示した 解のZをX(=x/L)に変更するだけで、式(25)







(b) 排水条件 図2 壁状ドレーンの圧密の理想モデル

の解が得られる。故に、図2に示す壁状ドレーンの圧密の任意点のひずみ $\varepsilon_x$ ,  $\varepsilon_y$ ,  $\varepsilon_z$  は,式(21),式(23),式(24)から次のようになる。

| $\varepsilon_x = \varepsilon_{zf}$ | $\left\{2\sum_{i=1}^{\infty} \left(\frac{1}{\lambda_{i}^{2}} - \frac{\sin\lambda_{i}X}{\lambda_{i}}\right) \exp\left(-\lambda_{i}^{2}T\right)\right\}$ |          | (26) |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|
| ε, = 0                             |                                                                                                                                                        |          | (27) |
| $\varepsilon_z = \varepsilon_{zf}$ | $\{1-2\sum_{i=1}^{\infty} \frac{1}{\lambda_i^2} \exp(-\lambda_i^2 T)\}$                                                                                | 12 .<br> | (28) |

z = 0 の面で排水させるK。圧密, すなわち境界面の変形方向と排水方向が一致するK。圧密の場合は, 式 (10), 式(11), 式(13)から

$$\varepsilon_{x} = \varepsilon_{y} = 0$$
  
 $\varepsilon_{z} = \varepsilon_{y}$  ( $\varepsilon_{y}$  は式(9) で与えられている) } (29)

であるが、排水方向をx方向に変えただけのK。圧密では式(26)~式(28)に示すように立方体内部に発生す るひずみが大きく異なる。特に、横方向の境界面の変位を拘束しているにもかかわらず、粘土内部ではεx

(式 (26))が発生し、真の意味のK。圧密になっていない。この壁状ドレーンの圧密方程式は、式(25)に 示すように、一次元圧密方程式と全く同じであるが、ひずみ成分(換言すれば応力成分)の挙動は一次元圧 密とは全く異なる。したがって、境界面の変位および排水方向が一方向のみであっても、その方向が一致し ない場合は圧密過程中に応力やひずみが変化し、一次元圧密とは言えない。

なお,式(26)~式(28)で壁状ドレーンの圧密の任意点のひずみ ε x, ε y, ε z が与えられるので, これ らを式(15)に代入すると任意点の応力σ'x, σ'y, σ'z が得られる。

| 3. 2 球の圧密                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 図1に示す球の圧密では,球の中心を対称点とした変形が発生する。したがって,体積ひずみ e v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | は      |
| $\mathbf{e}_{\mathbf{v}} = \mathbf{\varepsilon}_{\mathbf{r}} + 2 \mathbf{\varepsilon}_{\mathbf{\theta}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (30)   |
| である。 & r および & 。は、半径方向の変位を u r とするとき                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| ∂ur ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (31)   |
| $\varepsilon_r = - \frac{\partial}{\partial r}$ , $\varepsilon_o = - \frac{\partial}{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (01)   |
| で与えられる。式(31)を式(30)に代入すると,式(32)を得る。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| $\partial u_r$ $u_r$ $1$ $\partial (r^2 u_r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (32)   |
| $e_v = -\frac{1}{\partial r} - 2 \frac{1}{r} = -\frac{1}{r^2} \frac{1}{\partial r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (02)   |
| 一方,体積ひずみ e v は式(9) および表 1 ~表 3 で与えられているので, R = r / r o とすると                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| $\frac{1}{2} \frac{\partial}{\partial r} \frac{u_r}{\partial r} = \frac{e_{vf}}{2} \sum_{i=1}^{\infty} \frac{\sin \lambda_i R}{2} \exp(-\lambda_i^2 T)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (33)   |
| $-\frac{1}{R^2} \frac{\partial R}{\partial R} \left( \frac{R}{r_0} - \frac{1}{r_0} + \alpha \right) + \alpha + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (00)   |
| を得る。文献5)の式(36)に示すように,球の圧密応力9は                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| 4 μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (34)   |
| $\varphi = \mathbf{p} - \frac{\mathbf{r}_0}{\mathbf{r}_0} \mathbf{u}_{\mathbf{r}_0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8      |
| であるが, このγは式(5) でも与えられるので, R=1 (r=r。:球の表面)の変位uroは                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| $\frac{1-\nu}{1-\nu} = \frac{1-2\nu}{1-\overline{1}} = \frac{1-2\nu}{1-\overline{1}$ | (35)   |
| $u_{r0} = -\frac{m_v p_{r0}}{1+\nu}$ E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| である。したがって,式(33)を積分して,R=1の変位が式(35)になるように積分定数を定めると                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| $\frac{u_r}{\sum} = \alpha_i \left\{ -\frac{R}{1} + \frac{1}{\sum} \frac{\infty C_i}{\sum} \left( \frac{\sin \lambda_i R}{1} - \frac{R \cos \lambda_i R}{1} \right) \exp(-\lambda_i^2 T) \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (36)   |
| $r_0 = 3 (1+\alpha) R^2 i^{\Xi} \lambda_i \lambda_i^2 \lambda_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| となる。故に, er および e 。は次のようになる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| $\frac{\varepsilon_r}{\varepsilon_r} = \frac{1}{1+\varepsilon_r} \left\{ \frac{2}{\varepsilon_i} \frac{C_i}{\varepsilon_i} \frac{\sin \lambda_i R}{\varepsilon_i} - \frac{R\cos \lambda_i R}{\varepsilon_i} \right\} - \frac{C_i}{\varepsilon_i} \frac{\sin \lambda_i R}{\varepsilon_i} + \exp(-\lambda_i^2 T)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| $e_{vf} = 3^{i=1} (1+\alpha)R^3 \lambda_i \lambda_i^2 \lambda_i = 1+\alpha \lambda_i R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (07)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (37)   |
| $\frac{\varepsilon_{\theta}}{1-1} = \frac{1}{1-1} \sum_{i=1}^{\infty} \frac{C_{i}}{\sum_{i=1}^{\infty} (\frac{\sin \lambda_{i} R}{1-1} - \frac{R\cos \lambda_{i} R}{1-1}) \exp(-\lambda_{i}^{2} T) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (38)   |
| $e_{vf} = 3 (1+\alpha) \mathbb{R}^{3} \stackrel{i=1}{=} \lambda_i = \lambda_i^2 = \lambda_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| εr および ε。が式 (37)および式 (38)から求まるので,任意点の応力σ'r およびσ'。は次のようにな                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.     |
| $\sigma'_{\rm r} = (\lambda + 2\mu)  e_{\rm v} - 4\mu\varepsilon_{\theta} \qquad \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (39)   |
| $\sigma'_{\Theta} = (\lambda + 2 \mu) e_{v} - 2 \mu (\varepsilon_{r} + \varepsilon_{\Theta}) \qquad \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • (40) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| 3. 3 円柱の外向き放射流れによる圧密                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| 体積ひずみevは                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| $e_{\mathbf{v}} = \varepsilon_{\mathbf{z}} + \varepsilon_{\mathbf{r}} + \varepsilon_{\mathbf{\theta}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (41)   |
| である。外向き放射流れのみによる圧密で,非回転の変形を仮定しているので,鉛直ひずみ ε₂は                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| $\varepsilon_{\alpha} = \overline{\varepsilon}_{\alpha} = 11_{\alpha0}/H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (42)   |

 $\varepsilon_z = \overline{\varepsilon}_z = u_{z0} / H$ 

| である。ここで,uz₀は円柱上端面の変位で,Hは円柱の髙さである。一方,(εr+εゅ)は                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\varepsilon_{\mathbf{r}} + \varepsilon_{\mathbf{o}} = -\frac{\partial \mathbf{u}_{\mathbf{r}}}{\partial \mathbf{r}} - \frac{\mathbf{u}_{\mathbf{r}}}{\mathbf{r}} = -\frac{1}{\mathbf{r}} \frac{\partial}{\partial \mathbf{r}} (\mathbf{r} \mathbf{u}_{\mathbf{r}}) (\mathbf{u}_{\mathbf{r}} : + 2 \epsilon \delta \bar{\mathbf{r}} \delta \bar{\mathbf{r}}) $ (43)                                         |
| である。したがって,体積ひずみevは式(42)および式(43)で与えられるが,さらに式(9)を用いると                                                                                                                                                                                                                                                                                                                                                         |
| $-\frac{1}{R}\frac{\partial}{\partial R}\left(R\frac{u_{r}}{r_{0}}\right) = e_{vf} - \frac{e_{vf}}{1+\alpha}\sum_{i=1}^{\infty}C_{i}J_{0}\left(\lambda_{i}R\right)\exp\left(-\lambda_{i}^{2}T\right) - \varepsilon_{z} \qquad (44)$                                                                                                                                                                         |
| となる。ここで, R = r / r o である。式(44)をR = 1 (r = r o)でur = uroに注意して積分すると                                                                                                                                                                                                                                                                                                                                           |
| $\frac{\mathbf{u}_{\mathbf{r}}}{\mathbf{r}_{0}} = -\frac{\mathbf{e}_{\mathbf{v}\mathbf{f}}(\mathbf{R}-1)}{2} + \frac{\mathbf{e}_{\mathbf{v}\mathbf{f}} \sum_{i=1}^{\infty} C_{i}}{1+\alpha^{i=1}\lambda_{i}} \{J_{1}(\lambda_{i}\mathbf{R}) - J_{1}(\lambda_{i})\}\exp(-\lambda_{i}^{z}\mathbf{T}) + \frac{\varepsilon_{z}(\mathbf{R}-1)}{2} + \frac{\mathbf{u}_{\mathbf{r}0}}{r_{0}} $ (45)                |
| を得る。したがって、 εェ 、 ε 。は次のようになる。                                                                                                                                                                                                                                                                                                                                                                                |
| $\varepsilon_{\mathbf{r}} = \frac{\mathbf{e}_{\mathbf{v}\mathbf{r}}(\mathbf{R}+1)}{2\mathbf{R}} - \frac{\varepsilon_{\mathbf{z}}(\mathbf{R}+1)}{2\mathbf{R}} + \frac{\mathbf{u}_{\mathbf{r}0}}{\mathbf{r}_{0}\mathbf{R}} + \frac{\mathbf{e}_{\mathbf{v}\mathbf{f}}}{(1+\alpha)\mathbf{R}} \sum_{i=1}^{\infty} \left(\frac{C_{i}}{\lambda_{i}} \{J_{1}(\lambda_{i}\mathbf{R}) - J_{1}(\lambda_{i})\}\right)$ |
| $-C_{i}R J_{0} (\lambda_{i}R))exp(-\lambda_{i}^{z}T) \qquad (46)$                                                                                                                                                                                                                                                                                                                                           |
| $\varepsilon_{\theta} = \frac{e_{vf}(R-1)}{2R} - \frac{e_{vf}}{(1+\alpha)R} \sum_{i=1}^{\infty} \frac{C_i}{\lambda_i} \{J_1(\lambda_i R) - J_1(\lambda_i)\} \exp(-\lambda_i^2 T) - \frac{\varepsilon_z(R-1)}{2R} - \frac{u_{r0}}{r_{0}R} $ (47)                                                                                                                                                             |
| なお,式(46),式(47)に含まれるεzとuroは圧密形式によって異なり,具体的には次のようになる。                                                                                                                                                                                                                                                                                                                                                         |
| $\left[ p_z $ 既知型K <sub>0</sub> 圧密 \right] (等方圧密) (等方圧密) ( $\varepsilon_z = 0$ 圧密)                                                                                                                                                                                                                                                                                                                          |
| $\varepsilon_{z} = e_{vf} (1 - \frac{\overline{u}}{u_{0}}) \cdots (48)  \varepsilon_{z} = \frac{e_{vf}}{3} (1 - \frac{\overline{u}}{u_{0}}) \cdots (50)  \varepsilon_{z} = \frac{u_{z0}}{H} = 0  (52)$                                                                                                                                                                                                      |
| $u_{r0} = 0  \dots  (49)  u_{r0} = -\frac{e_{vf}R}{3} (1 - \frac{\overline{u}}{u_0})  \dots  (51)  u_{r0} = -\frac{e_{vf}R}{2} (1 - \frac{\overline{u}}{u_0})  \dots  (53)$                                                                                                                                                                                                                                 |
| 式(46)~式(53)から、各圧密形式の円柱の任意点のひずみεr, εσ, εz が求まるので、任意点の応力、                                                                                                                                                                                                                                                                                                                                                     |
| $\sigma'_{r}$ , $\sigma'_{o}$ , $\sigma'_{z}$ は, 次式から求めることができる。                                                                                                                                                                                                                                                                                                                                             |
| $\sigma'_{\mathbf{r}} = \lambda  \varepsilon_{\mathbf{z}} + (\lambda + 2  \mu) + \varepsilon_{\mathbf{r}} + \lambda  \varepsilon_{\mathbf{o}}$                                                                                                                                                                                                                                                              |
| $\sigma'_{\theta} = \lambda \left( \varepsilon_{z} + \varepsilon_{r} \right) + \left( \lambda + 2 \mu \right) \varepsilon_{\theta} $ (54)                                                                                                                                                                                                                                                                   |
| $\sigma'_{z} = (\lambda + 2 \mu) \varepsilon_{z} + \lambda (\varepsilon_{r} + \varepsilon_{\theta})$                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3. 4 中空円柱の圧密                                                                                                                                                                                                                                                                                                                                                                                                |
| ここでは、由空田はの笑方圧密お上びK、圧密を取り扱う。                                                                                                                                                                                                                                                                                                                                                                                 |

〔等方圧密〕

内向き放射流れのみと仮定しているので、円柱の圧密と同様に、体積ひずみ e v および鉛直ひずみ e z は 式(41)および式(42)で与えられる。また、( e r + e o )も円柱の圧密と同様に式(43)で与えられ、等方圧 密の e z は式(50)である。したがって、式(41)、式(43)、式(50)および式(9)から次式を得る。

 $-\frac{1}{R}\frac{\partial}{\partial R}\left(R\frac{\mathbf{u}_{\mathbf{r}}}{\mathbf{r}_{w}}\right) = \mathbf{e}_{\mathbf{v}\mathbf{f}}\left(\frac{2}{3}-\sum_{i=1}^{\infty}\left\{\frac{C_{i}}{1+\alpha}D_{0}\left(\lambda_{i}R\right)+\frac{2C_{i}D_{1}\left(\lambda_{i}\right)}{3\left(1+\alpha\right)\left(n^{2}-1\right)\lambda_{i}}\right\} \exp\left(-4\lambda_{i}^{2}n^{2}T\right)\right)$ (55)

ここで,  $R = r / r_w$  ( $r_w$ :内周面半径) である。等方圧密であるので,  $u_{re} / r_e = u_{rw} / r_w$ で ある<sup>1)</sup>。したがって,式(55)を積分し, $u_{re} / r_e = u_{rw} / r_w$ となるように積分定数を定めると,変位 $u_r$ は式(56)のようになる。

$$-R\frac{\mathbf{u}_{\mathbf{r}}}{\mathbf{r}_{w}} = \mathbf{e}_{vf} \left[ \frac{R^{2}}{3} - \frac{1}{1+\alpha^{s-1}\lambda_{i}} \sum_{i}^{\infty} \frac{C_{i}}{\langle \mathbf{R} \mathbf{D}_{i} (\lambda_{i}\mathbf{R}) + \frac{nD_{1}(\lambda_{i}\mathbf{n}) - n^{2}D_{1}(\lambda_{i})}{n^{2} - 1} + \frac{R^{2}D_{1}(\lambda_{i})}{3(n^{2} - 1)} \right] \exp\left(-4\lambda_{i}^{2}n^{2}T\right)$$

$$\frac{\delta c_{i}}{\delta c_{i}} = \left[ \frac{1}{3} - \frac{1}{1+\alpha^{s-1}\lambda_{i}} \sum_{i}^{\infty} \frac{C_{i}}{\langle \lambda_{i} \mathbf{D}_{0}(\lambda_{i}\mathbf{R}) - \frac{1}{R}} D_{1}(\lambda_{i}\mathbf{R}) - \frac{nD_{1}(\lambda_{i}\mathbf{n}) - n^{2}D_{1}(\lambda_{i})}{R^{2}(n^{2} - 1)} + \frac{D_{1}(\lambda_{i})}{3(n^{2} - 1)} \right] \exp\left(-4\lambda_{i}n^{2}T\right)$$

$$(56)$$

$$\begin{array}{l} \underbrace{s_{\theta}}{e_{vr}} = (\frac{1}{3} - \frac{1}{1+\alpha^{s_{1}}} \sum_{\lambda}^{\infty} \frac{C_{i}}{l_{i}} (\frac{1}{R} D_{i}(\lambda_{i}R) + \frac{nD_{i}(\lambda_{i}n) - n^{2}D_{i}(\lambda_{i})}{R^{2}(n^{2}-1)} + \frac{D_{i}(\lambda_{i})}{3(n^{2}-1)} exp(-4\lambda_{i}^{2}n^{2}T) \end{array} \right)$$
(58)  

$$\begin{array}{l} \underline{s_{k}}, \ \underline{s_{s}} \ \underline{u}, \ \underline{x}(50) \\ \underline{s_{k}}, \ \underline{s_{s}} \ \underline{s} \ \underline{s} \\ \underline{s_{k}}, \ \underline{s_{s}} \ \underline{s} \ \underline{s} \ \underline{s} \ \underline{s} \ \underline{s} \\ \underline{s_{k}}, \ \underline{s_{s}} \ \underline{s} \ \underline{s} \\ \underline{s_{k}}, \ \underline{s} \ \underline{s} \ \underline{s} \ \underline{s} \\ \underline{s_{k}}, \ \underline{s} \ \underline{s} \ \underline{s} \\ \underline{s_{k}} \ \underline{s} \ \underline{s} \\ \underline{s} \\ \underline{s} \\ \underline{s} \ \underline{s} \ \underline{s} \\ \underline{s} \end{matrix} \right$$
(60)

$$\frac{\varepsilon_{e}}{e_{vr}} = -\frac{1}{R^{2}} \sum_{i=1}^{\infty} \frac{C_{i}}{\lambda_{i}} \left\{ R D_{1} \left( \lambda_{i} R \right) - \frac{n^{2} R^{2}}{n^{2} - 1} D_{1} \left( \lambda_{i} \right) \right\} \exp\left(-4 \lambda_{i}^{2} n^{2} T\right)$$
(63)  

$$\pm \hbar, \quad \varepsilon_{z} \quad \text{i}, \quad \pm (48) \\ \pm k \\ \text{i} \\ \text{i} \\ \frac{\varepsilon_{z}}{e_{vr}} = 1 + \frac{2}{n^{2} - 1} \sum_{i=1}^{\infty} \frac{C_{i}}{\lambda_{i}} D_{1} \left( \lambda_{i} \right) \exp\left(-4 \lambda_{i}^{2} n^{2} T\right)$$
(64)

以上に、等方圧密及びK。圧密の中空円柱内部のひずみ $\varepsilon_r$ ,  $\varepsilon_o$ ,  $\varepsilon_z$  を示したが、他の形式の圧密に ついても同様に検討できる。また、任意点のひずみが判明すれば、任意点の応力 $\sigma'_r$ ,  $\sigma'_o$ ,  $\sigma'_z$  は式(54) で求めることができる。

## 4. 計算例および考察

4.1 K。圧密の応力とひずみ

境界面の横方向の変位を拘束し、上端面のみが沈下する形式の圧密を、一般に「K。圧密」と呼んでいる。 ところが排水方向と境界面の変位方向とが異なる場合は、粘土内部には横方向のひずみが発生し、真の意味 のK。圧密にはならない。このような圧密としては、壁状ドレーンによる圧密、円柱のK。圧密、中空円柱 のK。圧密(サンドドレーンの圧密)などがある。そこで、このような圧密の例として、円柱のK。圧密の ひずみおよび応力経路を、図3および図4に示す。図3をみると、K。圧密にもかかわらず、円柱内部では  $\varepsilon_r$ および $\varepsilon_o$ が発生している。このようなひずみが発生するメカニズムは、次のようである。体積ひずみ  $e_v$ は、排水面に近いところが速く発生し、排水面から違いところが遅く発生する。ところが、非回転変形 を仮定しているので、いわゆる等ひずみ条件になっており、円柱のいたるところで鉛直ひずみ $\varepsilon_z$ は等しい。 したがって、圧密のごく初期を考えると、排水面付近では体積ひずみ $e_v$ はかなり発生するが $\varepsilon_z$ はまだあ まり発生していないために、( $\varepsilon_r + \varepsilon_o$ )が発生せざるを得ない。一方、排水面から違いところの圧密の ごく初期を考えると、体積ひずみがあまり発生していないのに $\varepsilon_z$ は発生しているので、結局負の( $\varepsilon_r$  +  $\varepsilon_o$ )が発生する。つまり、境界面の横方向変位を拘束しているが、粘土内部では等ひずみ条件と体積ひず



みの関係から横方向の変位が発生するのである。

初期応力が $\sigma'_{zo} = 1 \text{ tf/m}^2$ ,  $K_{o}=0.5(\nu = 1/3)$ の円柱 に $\overline{p}_z = 1.0 \text{ tf/m}^2$ の荷重を作用させたときの応力経 路を示したものが図4でる。円柱内の応力はK。線上 を通過せず,排水面に近いところは、初期には等方応 力が増加し,後期に偏差応力が増加する。排水面から 遠いところはこの逆である。このような応力経路にな る理由は,図3から直ちに理解できる。例えば排水面 から遠いところでは、初期には体積ひずみは殆ど発生 せず,正の $\varepsilon_z$ と負の $\varepsilon_r$ ,  $\varepsilon_o$ が発生する。したが って,この位置では平均有効応力 $\sigma'_m$ が増加せず、偏 差応力のみが増加する。一方,排水面に近いところで は、圧密初期から体積ひずみが発生し、 $\varepsilon_r$ もよく発





生するので、偏差応力はあまり変化せず平均有効応力が増加する。このような現象が発生する原因は、排水 方向と境界面の変形方向が異なるため、つまり、体積ひずみは横方向に分布し、土塊全体で等しい ε₂ が発 生するためである。したがって、同じような変形および排水条件である、壁状ドレーンのK。圧密及び中空 円柱のK。圧密(サンドドレーンの圧密)でも図4に類似したような応力経路になる。

なお、この論文では粘土は等方線形弾性と仮定しているので、最終的には土塊の至るところで $\varepsilon_r = 0$ 、  $\varepsilon_o = 0$ となり、応力もK<sub>0</sub>線上に戻る。しかし、実際の粘土は塑性的挙動を示すので、 $\varepsilon_r や \varepsilon_o が 0$ に 戻ったり、応力がK<sub>0</sub>線上に戻ったりすることはないのではないかと思われる。 4.2 等方圧密のひずみ

図5に等方圧密のひずみを示す。K。圧密では  $\varepsilon_z$  /evrは最終的には1に、 $\varepsilon_r$  /evr,  $\varepsilon_o$  /evrは最終 的に0になるが、等方圧密の場合は $\varepsilon_{zt}$  /  $e_{vt} = \varepsilon_{rt}$  /  $e_{vt} = \varepsilon_{ot}$  /  $e_{vt} = 1$  / 3 である。この点を除けば、 両者のひずみの挙動は類似している。例えば、排水面から遠いところ(図5 (a))では、体積ひずみ  $e_v$  が まだ殆ど発生していないときに $\varepsilon_z$  は既に発生するので、負の $\varepsilon_r$ ,  $\varepsilon_o$  が発生する。逆に排水面付近では、 圧密の早期から体積ひずみ  $e_v$  がよく発生するので、大きな $\varepsilon_r$  が発生し、そのあと  $\varepsilon_r$  / $e_{vr} = 1/3 \sim c$ 減小する。その間図5のように、土塊内部のひずみ(換言すれば応力)は圧密過程中に複雑に変化する。等 方線形弾性を仮定しているので、 $\varepsilon_{zt}/e_{vt} = \varepsilon_{rt}/e_{vr} < \varepsilon_{ot}/e_{vt} < c$ なるが、塑性的挙動を示す実際の粘土で 最終的に $\varepsilon_{zt} = \varepsilon_{rt} = \varepsilon_{ot}$  となるかどうか疑問である。



5. 結論

本論文では、等方線形弾性を仮定して、土塊内部の応力やひずみの挙動を検討した。その主要な結論は、 次のとおりである。

- (1) 立方体,球,円柱および中空円柱の応力およびひずみの成分を表わす式を導出し、本文に示した。
- (2) いわゆるK。圧密でも、境界面の変位方向と排水方向が異なる場合には土塊内部に横方向の変位やひ ずみが発生し、応力もK。線上を通過しない。したがって、真の意味のK。圧密ではない。
- (3) このような現象が発生するのは、体積ひずみの分布と ε Zの分布が異なるためである。
- (4) 等方圧密のひずみ成分(応力成分)も同じ理由から複雑な挙動を示す。

## 参考文献

- 1) 熊本直樹,吉国洋(1986):異方性中空円柱の圧密,土木学会論文報告集,第 370号/Ⅲ-5, pp.199~207
- 熊本直樹,吉国洋(1986):バーチカルドレーンを打設した地盤の有限要素法による計算方法, 地盤と建設(土質工学会中国支部論文報告集), Vol. 4, No. 1, pp.43 ~ 52
- Kumamoto, N. and H. Yoshikuni (1981): "A key to solution of the irrotational consolidation and its application to cylindrical clay", Soils and Foundations, Vol. 21, No. 2, pp 35 ~ 46
- 4) Yoshikuni, H. and N. Kumamoto (1984): "Study on the irrotational consolidation", Mitsubishi Heavy Industries, Ltd., TECHNICAL REVIEW, Vol. 21, No. 2, pp.87~95
- 5) 熊本直樹,吉国洋(1985):非回転圧密への圧密応力の適用,地盤と建設(土質工学会中国支部論 文報告集), Vol. 3, No. 1, pp.1 ~ 10
- 6) 吉国洋(1973):多次元圧密とその軸対称問題への適用,東京工業大学学位論文