車両移動計測手法の河川堤防点検への適用に関する研究

Application of Mobile Measurement Method to Inspection of River Dike

藤木三智成	Michinari FUJIKI	(国際航業㈱ '	営業本部)
西山哲	Satoshi NISHIYAMA	(岡山大学大学)	院 環境生命科学研究)
井上浩一	Koichi INOUE	(国際航業㈱	技術本部)
堀川毅信	Takenobu HORIKAWA	(国際航業㈱	技術本部)
大石哲	Tetsu OOISHI	(国際航業㈱	技術本部)
鳥田英司	Eiji TORITA	(国際航業㈱	技術本部)
阿部亮吾	Ryogo ABE	(国際航業㈱	技術本部)
徳岡杜香	Morika TOKUOKA	(国際航業㈱	技術本部)

本論文は、レーザスキャナを車両に搭載したモバイルマッピングシステム (MMS: Mobile Mapping System) を河川堤防の点検作業に応用することを試みた成果をまとめたものである. 具体的には、これまでは熟練技術者による目視巡視によって判断されていた堤防上の変状を、前記車両が堤防天端上を走行するという簡便な計測手法により、高精度で定量的に把握することの可能性を検証した結果を考察するものである. 一連の試行結果より、水平 20mm、標高値 50mm 以内の高精度で堤防 天端の沈下等の変状を時系列的に追跡できることが実証され、本研究で提案する MMS によって広範囲におよぶ河川堤防を効率的に点検できる手法が構築できる可能性を示すことができた.

キーワード:車両走行計測,河川堤防,3次元計測,連続堤防高縦断図 (IGC:T-12, C-0)

1. はじめに

我が国では、日降水量 100mm から 200mm 以上の大雨の 発生する日数が増加する傾向 いにある. これは地球温暖化 およびそれに伴う水蒸気量の増加といった世界規模の気 象の変動が影響 2)していると考えられており、今後も長期 的には自然災害を引き起こす可能性のある大雨が多くの 地域で増加することが予想されている. 例えば, 2015 年9 月には、関東および東北地方において 24 時間雨量が 300 ミリ以上という記録的な豪雨が発生するという激甚災害 に指定される災害が発生した3ことは記憶に新しい.この 災害では国管理の5つの河川と都道府県管理の80の河川 において,堤防の決壊,越水や漏水または溢水あるいは堤 防法面の欠損・崩落などが発生4し,広範囲の地域で避難 指示,避難勧告が発令されるほどの影響をもたらした.河 川堤防は、基本的に土で築造されることから、堤防内への 浸水や越水による堤防の浸食に対して極めて脆く, 広域の 延長内で1箇所でも決壊するとその流域に多大な被害を 及ぼすことから, 平常時の維持管理において, 決壊の恐れ のある箇所を漏れることなく発見し、堤防の天端高を維持 する等の対策を迅速に行うことが重要である.このように 堤防等河川管理施設及び河道の点検要領においては, 平常 時の河川巡視は河川の区間区分に応じた適切な頻度とし, 重点的に監視が必要な区間では,必要に応じて強化して, 総観的に河川の状態把握を行うものとすると策定されて いるが5,作業は主に目視点検によるものであり、定量的

な判断をデータベース化することは困難である.また,定 期縦横断測量も実施されるが,200m 間隔で実施されてお り,連続した堤防全域において詳細な点検を行う対応に切 り替えようとも,予算や人員の減少あるいは技術の伝承が 困難といった課題を抱えており,増加傾向にある大雨に対 処できる維持管理作業が実施できないのが実情である.

このような背景を鑑み、図-1に示すような車両にレーザ スキャナおよびデジタル画像機器を搭載したモバイルマ ッピングシステム (Mobile Mapping System:以下 MMS と 記す)と称される計測システムを用いた点検手法の導入が、 国土交通省において検討されている^{0,7)}.

これは同じく車両に搭載された GNSS,オドメータある いは慣性計測装置(IMU: Inertial Measurement Unit)等によ ってレーザ照射時の自己位置および照射姿勢を計測する ことで、人的労力を要することなく、車両走行しながら

図-1 本研究にて使用する MMS の概要

迅速に河川堤防の3次元形状を把握できるので,効率的な 点検作業が可能になるものとして期待されている⁸⁾.

この MMS によるレーザ計測に関しては, 500m という遠 距離の照射距離をもつレーザスキャナ機器を搭載した MMS を用い、走行速度などの各種計測パラメータに対す るレーザ点群の計測精度を検証したもの⁹,あるいは本手 法を河川堤防の天端高の計測に応用した事例 10, さらには 河川堤防計測時のレーザ照射機器の照射範囲を改善する ための試み11)などが報告されているが、時系列的に取得さ れた河川堤防の3次元形状から変状箇所を抽出するため の具体的な手法およびその検証結果を報告した事例は極 めて少なく、その有用性が充分に議論されていない.本論 文は、岡山県東部を流れる一級河川旭川水系百間川の堤防 を対象に、2ヵ年にかけて計測した3次元レーザ点群から 沈下, 陥没あるいは不陸等を把握するためのデータ解析手 法を考案し、さらにその結果から把握される変状の定量的 な評価手法の妥当性を検証した結果を論じるものである. これにより、MMS による効率的な河川堤防の維持管理手 法の実用性を図るための基礎資料を提供できると考える.

MMS を用いた河川点検についての考察

2.1 MMS の概要

計測に用いた MMS の基本的特性を表-1 に示す. MMS のハード構成は計測データを取得するデジタル画像機器 とレーザスキャナ部,そして位置および姿勢を標定する GNSS と IMU 部に大別できる.

本計測においては、河川堤防全体をレーザ照射範囲内と するため、最大 500m の遠距離までの照射が可能であり、 さらにレーザ点群から詳細な河川堤防形状を復元できる ように1秒間に30万点の照射が可能なレーザスキャナを 2基搭載した.IMU は車両走行時のレーザ照射機器の3軸 方向の加速度と角速度の慣性データを計測するもので、そ れを積分することで機器の姿勢や方位が算出される¹².

なお、レーザは車両の走行方向に対して 45 度の角度で 照射される.計測は堤防の天端を時速 20km で走行しなが ら実施し、1 往復走行した各レーザを重ね合わせることで レーザ点群密度のさらなる向上を図った.

2.2 MMS による計測データの特徴について

図-2 は、本論文の計測対象の現場で取得された各計測 データの一例を示すものであり、図-2(b)から分かるよう に、堤防法尻箇所にまでレーザは照射されており、堤防全 体の形状を把握するために本計測に用いた遠距離照射お よび高密度レーザ機器による効果が得られている.なお図 -2(b)は、パラペット設置箇所の高さを基準として、天端 を含めて 1.0m 低い場所までを緑色で、それより低い箇所 を青色で表現している.パラペット設置箇所では、当構造 物によって遮られために、パラペット背面にレーザ光が届 かず、レーザデータが欠損する区間が生じているが、堤外

表-1 MMS	の仕様上	の基本性能
---------	------	-------

GNSS/IMU 性能	
位置精度	水平 0.02m, 高度 0.05m
	(GNSS 信号連続受信時)
姿勢精度	ピッチ,ロール角 0.005°
	ヘディング角 0.015°
デジタル画像機器	
スチルカメラ	500 万画素:4 台
全方位カメラ	1600×1200 画素:1台
レーザスキャナ	
最大有効測定レート	30 万点/秒, 最大 300kHz:2 基
最大測定距離	500m(反射率 80%の対象物)
	180m(反射率 10%の対象物)

(a) MMS によるデジタル画像例

⁽b) レーザ点群例.標高によって色を変えて表示している. 黒色部(色無し部)はレーザ点群が得られなかった箇 所を示す.

図-2 MMS による計測データ例

地の法面でパラペットに遮られた箇所以外には、レーザ光 が照射されていることが分かる.また図-2(b)においては、 色の濃淡は 1m² 当たりのレーザ光の個数すなわちレーザ 点群密度を表現しているが、堤防法面の一部にレーザ点群 密度の低い箇所すなわち色が薄い箇所が見られる.レーザ

スキャナが約 2m の高さに設置されているため,幅 6m の 堤防天端の中央部を走行する場合,鉛直方向から約57度 以内の範囲はレーザ光が堤防天端に当たり,結果として堤 防法肩付近にはレーザ光が入射されない. そこで堤防法肩 部近くを走行することで,法面ヘレーザ光が入射されるよ うに工夫するが、それでもなお勾配をもつ法面に対しては、 レーザ光の入射角度が地表面に対して低角になるため、植 生が繁茂している場合は,植生に反射されてレーザ光が地 表面に到達しない. そこで MMS を法尻箇所に走行させ, そこで得られたレーザ点群を重ねることで法面のレーザ 点群密度を高めることを試みた.その結果を,図-3に示 すような植生が繁茂している堤防法面を計測した結果か ら考察する. 図-4(a) および(b) は天端を走行した場合に当 法面に照射されたレーザ点群の分布であり、レーザが照射 された箇所は黒い点で表現されている.また図-5(a)およ び(b)は、天端と法尻走行によるデータを重ねたものであ り,明らかに法面上のレーザ点群密度が向上していること が分かる. 横断面図で見たものが, 図-4(b)および図-5(b) であるが、図-4(b)に示すように、天端走行からのレーザ 点群のみの場合は、後の3章で考察する通り、堤防の形状 を正確に表現するために必要な約400点/m²以上のレーザ 点群密度を堤防天端付近以外,たとえば法面上で得ること が困難となる.一方,図-5(b)のように法尻走行による計 測データを重ね合わせた場合は、堤防法面のレーザ点群密 度を増加させ、植生やレーザ照射角度の影響によるレーザ 点群の欠損部を解消することが分かる.しかしながらレー ザ点群は植生の表面部と地盤面からの両者から反射され たものが混在したものとなっており,堤防法面表面の位置 を正確に把握するのは困難である. すなわち法尻の走行に よって法面箇所のレーザ点群密度を向上させる手段によ っても,法面の変状を定量的に把握することの課題は残る 結果になった. MMS の法尻走行が可能な箇所も限られる ことなどを勘案すると、MMS 計測によって河川堤防全体 の形状の変化を捉えることは効果的な活用ではないと考 えられる.「堤防等河川管理施設及び河道の点検要領」で は、いくつかの点検項目が指定されおり、法面に関しては、 「表法面・表小段の亀裂, 陥没, はらみだし, 法崩れ, 寺 勾配化,侵食等はないか」を点検することになっているが, MMS は走行しながら測量できるという簡便な手法は実現 できるものの,堤防全体の形状の変化から変状の発生を検 出する手法として活用するのではなく, 点検要領が定める 「堤防天端及び法肩に亀裂, 陥没, 不陸等の変状はないか」 あるいは「天端肩部が侵食されているところはないか」と いった天端の計測データを用いて点検を実施する手法を 図ることが有用であると考える¹³⁾.実際に図-2の計測結 果から、堤防の天端箇所では高密度にレーザ点群を取得で きており、これを利用することで定期縦横断測量に替わる 連続堤防高縦断図の作成作業などにMMSによる計測を適 用することが、本手法の利点を活用できる計測法と考える.

そこで次章以降は, 天端走行による計測データを用いた結

果の考察を行う.

図-3 MMSによって計測した法面の状況

(a) 天端走行によるレーザ点群分布

(b) 天端走行による横断面図

(a) 法尻走行によるレーザ点群との重ね合わせ

(b) 天端および法尻走行による横断面図

図-5 天端および法尻走行によるレーザ点群分布

3. MMS を用いた堤防変状計測について

3.1 MMS による計測精度について

MMS は前述のとおり,走行中の自己の位置を車両に搭 載した GNSS で求める¹⁴⁾. したがって,GNSS 信号の受信 状況が良好な条件下でないとレーザ点群で計測される座 標値の精度は保証できない.本計測でのMMS では,既知 点からの補正観測情報を利用して移動局に送信し,当移動 局の位置をリアルタイムで測定する RTK-GPS (Real-Time Kinetic GPS) 方式の測位を用いるが,この手法では 4 個 以上の衛星から信号を受信できなかった場合は Fix 解が求 まらない.河川堤防での計測においては,衛星からの信号 を遮る構造物が少ない場合が多いが,受信する衛星信号は 時間によって変化し,その影響により自己位置の計測値の 精度は安定しないことがある.それを改善するために,座 標値をトータルステーション等で測量した標点を設置し, 当標点に対応する箇所をレーザ点群またはデジタル画像 より特定し,その値を用いて MMS 車両の位置や姿勢を再

図-6 実験で用いた精度検証用球体

計算して計測精度を確保する手法も用いられているが,河 川堤防の計測においては,計測区間が長距離に及ぶため標 点を設置することは計測作業の効率化を妨げるものとな る、そこで、本 MMS においては GNSS、IMU に加えてタ イヤの回転数を計測するオドメータ(DMI: Distance Measuring Instrument) を加えた3 種の計測値を複合させた 測位計算を行なうことで、GNSS 信号の受信の不安定さを 改善する.ただしIMU 計測値は車両の加速度や角加速度 を積分して姿勢を算出するので,時間とともに蓄積する誤 差が含まれる. そこでカルマンフィルタに代表される状態 推定フィルタを用いた演算処理を導入し、各種センサ に よる位置や速度情報をリファレンスとして利用し, カルマ ンフィルタの出力値を慣性装置等の値にフィードバック するルースカップリング (loose Coupling) と称される演算 技術を導入することで GNSS および IMU 信号の不安定さ を解消し,補正用の標点を設置することなく高精度の計測 が実施できることを試みる¹⁵⁾. これは POSLV といった名 称で実用化されているシステムであり、航空レーザ測量に おいて,使用するカメラの位置および角度を正確に計測す ることができるため、地上に標定を設置することなく、レ ーザ測量の処理を行うことを可能にしたという実績があ る¹⁶. しかしながら, 搭載した機器への振動の影響が少な い航空機という移動体を用いた場合の実績であり,車両に 搭載した場合に走行速度によって変わる移動中の上下動 の影響がどのように現れるのかは確認されていない. さら に、前述のとおり、MMS は航空レーザ測量に比べて点群 密度は高いが、レーザ光の地表面への入射角は低く、植生 の影響を受けやすい. その際, MMS 車両の自己の位置を 計測する精度が、レーザ点群密度や低入射角のレーザの照 射距離と共に、どのように影響して表れるのかも検証され ていない. そこで本研究では、河川堤防の計測に先立ち、 導入した車両の自己位置を計測するシステムが,表-1 に 示す仕様通りの水平 20mm, 標高値 50mm を得るための計 測条件を把握するための実験を実施する.実験は図-6 に 示すように、半径 100mm の球体を道路から 10m 間隔に9 本設置し、道路上を走行した MMS によってレーザ点群を 取得する. MMS には2 基のレーザスキャナが搭載されて おり、進行方向に対して45度の角度でレーザは照射され

る. 図-7 は球体の配置とレーザ照射の方向を平面図で表し たものである.車両から球体には、各走行時に左右のどち らか 1 基からのレーザスキャナからのレーザが照射され るが、往復走行によって左右のレーザスキャナからの各レ ーザ点群を重ね合わせることでレーザ点群密度を高める ことができる.この点群から球体の形を推定し、それを利 用して中心座標を算定し、さらに別途同じ中心座標を±

(3mm+3ppm×D:D は測定距離,単位は mm)の測定精度 をもつトータルステーションを用いて測量した際の値と の差すなわち較差を求め,MMS によるレーザ計測の精度 を推定した.図-8 および図-9 は,MMS の往復走行によっ て計測した場合の水平方向の座標値と標高の座標値の較 差を示したものである.なお図-8 および図-9 ともに,MMS の走行速度を変化させ,それぞれの較差を求めた.ここで 較差は式(1)のようにして求めた.

$$DIS = OBS - TV$$

ここで *DIS*: 較差, *OBS*: MMS によって計測した座標 値, *TV*: トータルステーションで計測した座標値

前述のとおり、POSLV システムは GNSS による自己の 位置を計測する精度の不安定さを解消する利点を有して いるが、MMS に導入した際に車両走行速度やレーザ照射 がどのように影響するのかは明らかではなかった. トータ ルステーションによる測量値が正しいと想定した場合の 結果ではあるが、図よりレーザ照射距離が 50m 以内であ れば,車両の走行速度には依存することなく,前述の目標 とする機器の性能上の計測精度が確保できることが分か る.機器の仕様上は、レーザの照射距離は100m以上であ るが、照射距離が 50m を超えると較差が大きくなる傾向 が現れる、これは照射距離が大きくなると、レーザ光は到 達しているものの,球体を正確に認識できる照射点数が確 保されないことによると考えられる.この理由を考察する ため、図-8および図-9に示した計測とは異なり、往復で はなく片道走行時の左レーザのみによる照射によって計 測した結果が図-10 である. 較差は同じく式(1)を用いて, 水平方向の精度を評価した. 往復走行による計測結果と比

図-10 片道走行によるレーザ計測の水平精度

較して、レーザ照射距離に対して較差が大きくなっている. これらの結果より、照射されるレーザ光の個数が少ないと、 対象物の形状の認識に誤差が発生しやすくなるため、計測 精度が劣化すると考えられる.またレーザ点群密度は、車 両走行速度に依存することも明らかになり、河川堤防の変

(1)

図-11 レーザ照射距離とレーザ点群密度の関係

状検出を目的とした MMS においては,計測の効率化との 兼ね合いもあるが,走行速度を抑制してレーザ点群密度の 向上を図った方が,変状の認識は容易になることが分かる. この片道走行による結果から,球体に照射されたレーザ光 を 1m² 当たりに照射されるレーザ光の個数に換算してレ ーザ点群密度とし,それと較差の関係を示したものが図 -11 である.図には、レーザ点群密度が小さくなると、較 差が大きくなる傾向が示されている.これらの結果から, POSLV が有効に働いていても計測精度を確保するには、 400 点/m² 以上のレーザ点群密度が必要になり、そのため レーザ照射距離は 50m 以内,車両走行速度は時速 30km 以 内で往復走行することが望ましいことが把握できた.

3.2 堤防天端の変状解析結果

本節では、1度の計測値から堤防天端の変状を解析した 結果をまず考察する.最初に MMS の河川堤防天端走行に よって取得されたレーザ点群密度の分布を図-12 に示す. 前章での結果から、堤防の形状を正確に表現するためには 約 400 点/m²以上のレーザ点群密度が必要となるが、天端 部ではこの点群密度が確保できる一方で、法面から堤内に かけてレーザ点群密度は低下している.この図からも MMS の天端走行により取得したデータでは、堤防天端の 計測値を活用することが効果的であることが分かる.

次に図-13 に、MMS によるレーザ点群より 10cm メッシ ユの TIN (triangulated irregular network:不整三角網) モデ ルで内挿補間することにより作成した河川堤防の数値標 高モデル (DEM; Digital Elevation Model)の例を示す.こ の 3 次元的に復元された河川堤防モデルを用いて、連続堤 防高縦断図を作成する.縦断図は 2500 分の 1 の河川基盤 地図上において図-14 に示す 3 測線、すなわち河川堤防中 央の位置 (図において C と表示)、さらにこの中央の位置 から 1.5m (C+1.5 と表示)、および 3.0m (C+3.0 と表示) の位置にある計 3 測線の標高データを求めた.

図-15 に河口から 1km+600m~2km の地点間の縦断図を 示す.堤防天端中央(C)および C+1.5 の 2 測線での縦断勾 配は 1/3500 と推定でき,車両走行によって連続堤防高縦

図-12 MMSの天端走行時のレーザ点群分布

図-13 DEM によって再現された河川堤防例

断図が作成できることで,測量作業の効率化を示す結果を 得ることができた.図の1km+740mの位置において,C, C+1.5 および C+3.0 の位置に,前後の場所より約0.1m以 上の急な標高差があり,凹状の地形が在ることが読み取れ る.本計測の計測精度を検証する目的も含めて,当該箇所 を目視にて点検した結果を図-16に示す.図中に現位置の 目視によって判断された窪地を青色の実線で示す.

「堤防等河川管理施設及び河道の点検要領」では、「天端肩部が侵食されているようなところはないか(あるいは

出水期前よりも進行していないか)」を目視により点検す ることになっているが ¹³⁾,実際の目視作業では定量的な 評価は困難である.一方,本計測では車両走行により約 50mmの窪地として当該箇所が定量的に検出できることが 分かる. また図-15 における C+3.0m の縦断図において 1km+880m の箇所の縦断図に大きく凹状の変化が見られ る. 当箇所は, 前述の 1km+740m の箇所とは異なり, 堤防 天端中央 C の縦断図では大きな凹状のものとしては観察 されない.この状態を同じく現地にて目視確認したところ, 図-17のように堤防天端から堤外地への進入路に相当する 箇所であり、図-15の計測値を裏付ける結果を得た. すな わち河川基盤地図上で法肩と判断した C+3.0m は堤防法面 内の一部であり、今回の結果はその形状を明確に捉えてい る.以上の結果から、レーザ点群から得られた DEM から 複数の測線での連続堤防高縦断図を作成することにより, 天端の状態をどの箇所がどのようになっているのかを定 量的に評価する手法としての利点が実証され、 レーザ点群 から得られた DEM から複数の測線での連続堤防高縦断図 を作成することにより, 天端の状態を定量的に評価する手 法として MMS が活用できると考える.

3.3 堤防天端の2時期のデータ比較

次に,2013 年と2015 年に実施した MMS 計測のデータ を重ね合わせることによる変状解析結果を示す.前述の解 析と同様に百間川河口の1km+600m から2kmの区間の右

図-16 目視による窪地の確認結果

図-17 目視による進入路の確認結果

図-18 2時期の計測値を重ね合わせた際の標高値差

岸部堤防において,2500 分の 1 の河川基盤地図上におけ る図-14 に示す堤防天端部の 3 測線,すなわち河川堤防中 央の位置(図において C と表示),さらにこの中央の位置 から 1.5m (C+1.5 と表示),および 3.0m (C+3.0 と表示) の位置にある計 3 測線の標高データを考察する.

図-18は、2時期のレーザ点群の標高値を重ね合わせた 結果の一例である。図-14に示す各測線において重ね合わ せた際に生じる偏差の分布状態を各測線の値をつないだ 面的な値として示している.図-18に示すように,堤防天端部では白色の分布,すなわち±10mm以下の偏差内で DEM データが重なり合っていることが分かる.当該箇所 の堤防天端部では沈下等の変状の発生は,定期横断測量で は確認されておらず,2時期の堤防天端部の計測値が ±10mm以下で重なり合う本結果は,表-1に示す仕様通り の高精度計測ができていること,すなわち本計測手法の再 現性が高精度で実現できることを実証している.また,堤 防天端に隣接する一般道路部では20~40mmの標高差が 検出されている.前述のとおり,堤内地での計測精度は堤 防天端部に比較して高いとは言えないが,図-9から考慮 される計測精度以上の標高値の変化が出現しており,沈下 が発生している可能性があることを示している.

図-19は、図-15に示す 2013年で実施した連続縦断堤防 高図に 2015年の計測結果を重ね、堤防高の経時変化を詳 細に見たものである.2015年の計測結果と2013年の計測 結果をそれぞれ赤色と青色で示す.変状が発生していない ことから、赤色と青色の堤防高値はほぼ重なり合う結果と なる.すなわち堤防天端(C)とC+1.5mの堤防肩部では、 2時期の計測値が一致する結果となっており、沈下などの 変状が出現していない状態を追跡できることを示してい る.C+3.0mの縦断堤防高図においては、少し堤防高の状 態の変化が見られるが、これは法面を含んでいる箇所であ り、天端走行の場合には法面部の一部に十分なレーザ点群 密度が保証できないために発生したものと考える.

この2時期の標高についての計測値の重なり合いを詳 細に見たものが表-2である.この結果より,堤防天端(C) と C+1.5m(堤防肩)の測線上の偏差は最大値でも 20mm 以 下,ばらつきを示す標準偏差は2~3mmの値となっており, 沈下が発生していない当計測対象箇所の状況が広範囲に わたって高精度で再現できている. C+3.0m の測線も他の 測線に比べて精度が劣るものの,最大で30mm以下の精度 で3次元モデルが再現できていることを示しており、一般 的な航空レーザ測量による±150mmの精度と比較して, MMS 計測では非常に高精度の面的な計測が可能であるこ とを示している¹⁷⁾. また図-15 で示した 1km+740m の箇所 にて発生していた窪地については、当該箇所の標高値には 変化が見られないことから当該箇所の変状は進行性の状 態でないことも明らかになり、これまでの目視による巡視 と比較して,変状の経時変化を定量的に評価できる本手法 の利点がここでも示されている.

さらに図-13 に示した DEM を用いて 2 時期の標高値を 重ねて横断面にした例が図-20 であり, 1km+600m の箇所 の 2015 年度および 2013 年度の計測値を, それぞれ赤色と 青色で示す. 2014 年には当該箇所の定期横断測量が実施 されているが, その際堤防天端は 2%勾配を持っていたこ とが報告されており, 横断面の経時変化からも詳細に定量 的な点検を行うことができることが分かる. このように堤 防天端を走行する MMS 計測により, これまでの目視によ る巡視では困難であった定量的な計測を, 車両走行という 効率的な手法で実現できることが実証できた.

図-19 連続堤防高縦断図の2時期の重ね合わせ

表−2 2 時期のレーザ点群の重ね合わせ結果

	中央(C)	C+1.5m	C+3.0m
偏差(最大値)(mm)	10.0	10.0	10.0
偏差(最小値)(mm)	-13.0	-14.0	-23.7
平均值 (mm)	0.0	1.0	-11.0
標準偏差 (mm)	2.0	3.0	24.0

4. 結 言

本論文では,車両走行という迅速かつ簡便な手段によっ

て、河川堤防の変状を定量的に把握する計測手法の構築を 試み、計測精度の検証および変状検出結果の妥当性につい て、現場計測データを用いて考察した.その結果、次の 結論を得た.

- (1) GNSS, IMU および DMI の各計測値を複合させて、 車両走行時のレーザ照射位置および姿勢を取得する MMS 計測を用いて、河川堤防の変状を把握する手 法を実現するための計測に関する基本的な特性を把 握する実験を行った.その結果、数 100m の照射距 離特性を有するレーザスキャナを用いての精度検証 を行ったところ、レーザ照射距離が 50m 以内であれ ば、時速 30km 以内で往復走行によって 400 点/m² 以上のレーザ点群密度を確保すれば、前述の GNSS・IMU・GMI 複合航法の仕様通りの水平 20mm、 標高値 50mm の精度を保持できることが分かった.
- (2) 堤防天端走行では高精度計測が可能なレーザ点群密度を天端では取得できるが、法面ではレーザ点群の 欠損区間などが発生する.それを補完するために法 尻走行による計測データを活用する試みも実施した が、植生の影響を考慮すると、天端走行のデータから「堤防等河川管理施設及び河道の点検要領」が定 める天端の変状に関する項目を把握する手法として 使用することが効果的である.その場合、従来の目 視巡視では把握できなかった定量的かつ面的な点検 を高精度で実施できることが実証された.
- (3) 天端は高精度での計測が可能なことから、2 時期の レーザ点群を重ね合わせることで連続堤防高縦断図 の経時変化を簡便に求めることが可能であった.この場合、(1)に記述した GPS・IMU・DMIの複合航法 では水平 20mm、標高値 50mm 以内の精度で当経時 変化を追跡することが可能であることを現場データ により実証した.

上記の他,車両走行による計測という効率的な手段と高精 度を活かした定量的な利点により,任意の横断面図による 変状発生有無の点検作業も容易にできることが示された. 本論文では記述していないが,デジタル画像データを活用 した「亀裂」「目地開き」および「法崩れ」等の検出も可 能であることは現場でも確認できており,今後は現場での 実証例をさらに増やすことで,MMSによる計測手法の各 点検項目への適用の可能性をまとめていく予定である.

参考文献

- 1) 気象庁:気候変動監視レポート 2015, pp.21-31, 2016.
- 気象庁:異常気象リスクマップ 大雨が増えている, http://www.data.jma.go.jp/cpdinfo/riskmap/heavyrain. html, アクセス年月日 2016 年 10 月 13 日.

- 3) 内閣府:平成27年9月関東・東北豪雨による被害状 況等について(平成28年2月19日12:00現在), p.1.
- 内閣府: 平成 27 年 9 月関東・東北豪雨による被害状況等について(平成 28 年 2 月 19 日 12:00 現在), pp.6-15.
- 5) 国土交通省水管理・国土保全局河川環境課:堤防等 河川管理施設及び河道の点検要領, pp.4-5, 2012.
- 6) 久保田啓二朗,大浪裕之,西山哲,東良慶:自然災 害被害の予測・把握技術の高度化に向けて-堤防の変 状等を高精度に把握するモービルマッピングシステ ムの開発,土木技術資料,55号,pp.6-9,2013.
- 7) 東良慶,吉岡裕嗣,西山哲,石川貴一朗,船田征, 久保田啓二朗:モービルマッピングシステムの河川 堤防管理への適用性の検討,土木学会河川技術論文 集,第19巻, pp.21-26, 2013.
- 西山哲:車両走行型レーザスキャナーを用いた迅速 かつ効率的河川堤防検査手法の開発,河川, 69 巻, 807 号, pp.30-33, 2013.
- 間野耕司,石井一徳,平尾公孝,橘菊生,吉村充則, Devrim Akca, Armin Gruen:移動計測車両測量システム(MMS)により取得される点群の精度評価,写真 測量とリモートセンシング, Vol.52, No.6, pp.189-200, 2013.
- 10) 橘菊生,間野耕司,島村秀樹,西山哲:河川堤防計 測へのモバイルマッピングシステムの適用,写真測 量とリモートセンシング, Vol.54, No.4, pp.166-177, 2015.
- 11) 橘菊生,間野耕司,島村秀樹,西山哲:河川堤防計測 のための高所設置型 MMS の開発と精度検証,応用測 量論文集,第26巻,pp.75-86,2015.
- 12) 石川貴一朗,天野嘉春,橋詰匠,瀧口純一,清水聡: モービルマッピングシステムによる都市空間モデリ ング,計測自動制御学会産業論文集,第8巻,17号, pp.132-139,2009.
- 13) 国土交通省水管理・国土保全局河川環境課:堤防等 河川管理施設及び河道の点検要領, p.15, 2012.
- 石川貴一朗: Mobile Mapping System による道路測量 について、精密工学会誌、79巻、5号、 pp.397-400、 2013.
- 15) 熊谷秀夫: GPS/IMU の最新動向, 写真測量とリモー トセンシング, Vol.49, No.5, pp.326-331, 2010.
- 16) Applanix 社: http://www.applanix.com/products/ land/poslv.html, アクセス年月日 2016 年 10 月 12 日.
- 17) 宮瀬正,柘植貢,田中茂信,森田真一,野田敦夫, 川村啓一,山本幸次,目黒嗣樹:航空機搭載型レー ザ及び地上型レーザ計測の前浜地形計測への適用, 海岸工学論文集,第52巻,pp.1426-1430,2005.

(2016年6月20日 受付)