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ボーリング調査では，一般的にコアの岩級区分は岩の硬軟や形状，風化・変質の程度，

RQD（Rock Quality Designation）等を指標とした目視観察により行われるため，技術者間

で一部評価が異なることが課題となっている．本研究では，エコーチップ硬度計を用いて

得られたコアの硬度（反発値）と X 線コアスキャナーを用いて得られた X 線画像のデー

タに対して，ロジスティック回帰を用いた岩級区分法を新たに提案した．学習データに基

づいて構築したロジスティック回帰モデルの精度について，検証データを用いて評価した．

その結果，経験ある技術者が行った岩級区分を 6割程度の精度で再現できることを示した． 
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1．はじめに 

 
ボーリング調査では，ボーリングコアの岩級区分を岩

の硬軟や形状，風化・変質の程度，RQD 等の指標に基づ

いて行われている．これらの指標には，コアの色調やハ

ンマー打撃による打撃音，触感など，人間の五感による

判断が必要な項目が存在しており，定性的なものとなっ

ている．そのため，これらの結果は技術者間で評価結果

に差異が生じることが課題となっている． 
定量的な岩級区分の試みとして，エコーチップ硬度計

を用いた研究 1),2)が報告されており，エコーチップ硬度計

は，コアの物理的性質や岩級の把握に有効であることが

示されている．しかしながら，エコーチップ硬度計では，

測定の原理上，局所的な反発値（以後，L 値とする）を測

定するため，材料の不均質性がそのまま反発値に反映さ

れ，ばらつきの大きなデータが取得されるという問題が

ある．岩級区分のように，ある程度「マクロ」にボーリ

ングコアや岩石を評価したい場合には，ばらつきのある

反発値データの適切な前処理や，他の補助情報も利用し

た判定が必要となる． 
本研究では，エコーチップ硬度計の補助情報として，

ボーリングコアに対する X 線コアスキャナーから得られ

る X 線透過量に着目し，L 値と X 線透過量から岩級区分

を行う方法を新たに提案する．本研究で対象とする「デ

ータに基づいた岩級区分の問題」は，機械学習の文脈で

は識別問題に対応する．L 値と X 線透過量を説明変数(特
徴量)，岩級区分を目的変数とした識別問題を解くための

アルゴリズムに基づく岩級区分方法を提案し，提案手法

を実際のボーリングコアデータに適用し，従来の方法（技

術者による定性的な岩級区分）と比較することで，提案

手法の有効性を検証した． 
 
 
2．データの取得方法と計測データ 

 

本研究では，2 地点でサンプリングされたφ86mm オー

ルコアボーリングのコア試料（試料 A，試料 B とする）

を対象に検討を行った．これらのコア試料に対しては，

コア形状，割れ目の状態，風化の程度，変質の程度が評

価され，それらの評価に基づいた岩級区分が技術者によ

り実施されている．図-1 に深度毎の岩級区分の一例を示

す．本研究では岩級区分への適用性を検討することから，

測定区間は岩盤出現深度以深とし，試料 A は GL-9.8～
20.0m，試料 B は GL-19.8～85.0m で測定を行った．試料 

 

図-1 技術者判断による岩級区分の一例 
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A は泥質片岩～緑色岩から構成されており，試料 B はチ

ャート，泥質片岩，ドロマイト，塩基性凝灰岩から構成

される．本試料は，付加作用に伴うメランジュの発達す

る地域から採取したものであり，全体的に破砕質な状態

であった． 
 
2.1 エコーチップ硬度計 

エコーチップ硬度計は，バネの力を用いて試料表面に

小さな球（チップ）を衝突させ，球の落下速度と反発速

度の比率から反発強度（L 値）を求める試験機である（図

-2）．L 値は 0～1000 の範囲の値を示し，値が高ければ試

料が硬質である事を示している．エコーチップ硬度計に

は，打撃エネルギーやチップの移動距離の異なるインパ

クトデバイスが複数種類存在しているが，本研究では，

標準タイプである D タイプ（打撃エネルギー：11 N・mm，

チップ径：φ3 mm）を用いた． 
測定は，岩盤出現深度を基準に，5cm 間隔に行った．

コア箱に収められたコアの表面の中央付近を，所定深度

毎に，コア表面に対して垂直方向に打撃した．コアに亀

裂や表面の欠けが生じていた場合は，測定位置を深度方

向にずらして各深度 3 回ずつ測定を行った．礫打ちなど

による外れ値の影響を除くため，3 回測定した値の中央

値を特徴量（説明変数）として利用した．エコーチップ

硬度計の計測データの一例を図-3 に示す．縦軸が深度を

表しており，横軸が L 値を表している．図から明らかな

ように，エコーチップ硬度計の計測原理に起因して，L 値

はばらつきのあるデータであることが分かる．岩盤の性

質をマクロに評価したい場合には，データのばらつきが

問題となることが想像できる． 
 
2.2 X 線コアスキャナー 

本研究では車載式の X 線コアスキャナー（写真-1）を

用い，X 線の透過画像を取得した．写真-2 は X 線透過画

像の例を示している．撮影出力は 65kV，2mA で統一し

た．X 線画像データの加工にはフリーウェアの ImageJ3)

を用い，画像からグレースケールを抽出し，X 線透過量

とした．X 線画像は，16bit データのため，65,536 階調の

グレースケールで X 線の透過量を表現している．imageJ
を使用し，X 線画像のピクセルごとの画素値を読み取り，

その値を X 線透過量として取り扱った．ただし，X 線画

像では，X 線透過量が少ないほど画像上では白くなり，

画素値は大きくなるため，それぞれの大小関係は反比例

の関係にある．一般的に，X 線が透過し難い（画素値が

大きい）場合は，試料の密度が高く，岩石が硬質な場合

が多い．グレースケールはボーリングコアの中心と両端

に計 3 本の測線を配置し，測線部の画素値を深度方向に

読み取った．局所的な亀裂や空隙による外れ値の影響を

除くために 3 測線の中央値を特徴量（説明変数）として

利用した．なお，X 線透過量の値は 1 ピッチあたり 7.5mm
の解像度であるが，エコーチップ硬度計の解像度との整

合性を考慮し，所定深度の上下 2.5cm の範囲内における

中央値を採用した．グレースケールの読み取り方法の概

念図を図-4 に示示すす．．X 線コアスキャナーによる計測デー

タの一例を図-5 示す．縦軸が深度を表しており，横軸が

X 線透過量である．L 値と同様に，データにばらつきが

あることがわかる．なお，図-1，図-3，図-5 は対応する

データである． 
 

  

図-2 エコーチップ硬度計の概観 1) 

 

  
図-3 エコーチップ硬度計による計測データの一例 

 

 

3．岩級区分に用いる機械学習 

 

3.1 識別モデル 
本研究の目的は，エコーチップ硬度計と X 線コアスキ

ャンのデータに基づいて岩級区分を決定する方法を提案

することである．データに基づく岩級区分は，機械学習

の文脈では，「ある入力ベクトル t を K 個の離散クラ 
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写真-1 X 線コアスキャナー 
 

ス Ck の一つに割り当てること」，と解釈できる．このよ

うなタスクに対しては識別モデルを用いることが一般的

であり，本研究でも識別モデルを用いて岩級区分を試み

る．なお，データの分類としてクラスタリングが一般的

に利用されているが，クラスタリングではデータを解析

する前にクラス Ckを直接指定しないため，今回の目的で

は用いることができない． 
分類識別問題を解くための代表的な方法として，最小

二乗法，フィッシャーの線形判別，ロジスティック回帰，

サポートベクトルマシン（SVM），ニューラルネットワー

クを挙げることができる（例えば，Bishop4））．識別モデ

ルには多くの選択肢があり，最近では複雑な問題に特化

した高度なアルゴリズムも提案されているが，本研究で

は，基本的なロジスティック回帰を用いて岩級区分を試

みる．本研究でロジスティック回帰を用いた理由は，1) 
外れ値に対して頑健であること，2）学習の計算コストが

小さいこと，3）結果の解釈が容易であり，実務者にも受

け入れやすいこと，である． 
 
3.2 ロジスティック回帰 

本節では，本研究で用いるロジスティック回帰の基礎

について説明する．ロジスティック回帰は汎用的に用い

られている方法であり，一般的な機械学習の教科書にも

解説されているため，ここでは基本的な内容を示すにと

どめる．なお，本研究で対象とする岩級区分は 2 区分以

上あるため，より一般的な K > 2 クラスの場合のロジス

ティック回帰を考える． 
ロジスティック回帰は確率的にクラスを評価する方法

であり，データ x が与えられたとき，そのデータがクラ

ス Ckである確率 p(Ck | x)を用いる． 

𝑝𝑝�𝐶𝐶�|x� � 𝑝𝑝�x|𝐶𝐶��𝑝𝑝�𝐶𝐶��
∑ 𝑝𝑝�x�𝐶𝐶��𝑝𝑝�𝐶𝐶���

� exp�𝑎𝑎��
∑ exp�𝑎𝑎���

 (1) 

 

写真-2 コアに対する X 線透過画像の例 
 

図-4 グレースケール読み取り方法（概念図）  

  

  
図-5 X 線コアスキャナーによる計測データの一例 

 
この式は条件付き確率そのものであり，解釈によっては 
ベイズの定理とも捉えることができる．この確率的に評

価するという特性が，不確実性の大きいデータ，ばらつ

きの大きなデータを扱う際に有用となる．式中の ak は 
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活性（識別関数）を表し，本研究では，以下の線形関数

で与えることとした． 

𝑎𝑎� � w��𝑄𝑄 (2) 

ここで，，wk は重みベクトル，Q は特徴ベクトルを表す． 
本研究では，特徴ベクトルとしてデータ x の多項式を用

い，least absolute shrinkage and selection operator （lass
o）5)によりモデル選択の問題を回避している．なお，las
so に必要なハイパーパラメータは，ロジスティック回

帰の推定結果を確認しつつ試行錯誤的に決定する． 
ロジスティック回帰における「学習」とは，学習デー

タ x から重みベクトル wk を求めることに対応し，本研究

では最尤法によって重みベクトルを決定する．最尤法で

は次式で与えられる尤度関数を最大化して，重みベクト

ルを決定する． 

𝑝𝑝�T|w�, … , w� � ���𝑝𝑝���|𝑄𝑄�����
�

���

�

���
���������

�

���

�

���
 (3) 

ここで，ynk = yk(Qn)であり，T は tnk を要素とする目的関

数の N×K 行列である．なお，N は学習データの数，K は

クラスの数を表す．尤度関数の負の対数をとると， 

𝐸𝐸�w�, … , w�� � �ln𝑝𝑝�T|w�, … , w�� � ������
�

���
ln�����

�

���
 (4) 

が得られる．上記の関数 E(w�, … , w� )を最小化するため

に，本研究では最急降下法を用いる．係数ベクトルから

構成される行列 W = �w�, … , w��の，最急降下法における

更新は，次式で与えられる． 

W��� � W��� � η∇𝐸𝐸�w� (5) 

ここで，は学習パラメータを表し，∇𝐸𝐸�w�は次式で与え

られるパラメータベクトル wj に対するクロスエントロ

ピーの勾配を表す． 

∇��𝐸𝐸�w�, … , w�� � ����� � ����𝑄𝑄�
�

���
 (6) 

 

 

4．ロジスティック回帰による岩級区分 

 

 ここでは，2 章で示した L 値と X 線透過量を説明変数

として，3 章で示したロジスティック回帰により，岩級

区分を試みた結果を示す． 
 解析に用いるデータの詳細は表-1 に示す.解析に用い

るデータに関して，各試料の全体の 20％を訓練用に，残

りの 80％を検証用として利用した．ロジスティック回帰

の精度は，訓練データと検証データの選び方に依存する

ため，訓練用・検証用データの選択パターンを 10 通り用

意し，それぞれの正答率を集計した．また，本研究の最

終的な目標は，汎用的な岩級区分を実現する方法の提案

であることから，試料 A のデータで訓練したモデルの試

料 B への適用結果，および試料 B のデータで訓練したモ

デルの試料 A への適用結果も示す． 
 
4.1 結果の整理方法 
 先述したように，ロジスティック回帰は，データ x が

与えられた条件でのクラス Ck の確率 p(Ck | x)が評価され

る．図-6 は，ロジスティック回帰から出力される結果の

一例を表している．横軸の 1～5 までの数字は，岩級区分

の B，CH，CM，CL，D にそれぞれ対応している．縦軸

は確率であるため，意思決定のためには（ロジスティッ

ク回帰による推定値を決めるためには）何らかのルール

が必要である．ここでは単純に確率が最も高い岩級区分

を推定値とした．確率が等しい場合は推定値が決定でき

ないことになるが，本研究で扱ったデータに関してはそ

のような例は生じなかったことを付記する．なお，図中

の縦点線は，実際の岩級区分を表しており，図-6(a)は推

定に成功した例であり，図-6(b)は失敗した例である． 

 

表-1 各試料のデータセット情報 
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(a) 推定に成功した例 

 

(b) 推定に失敗した例 
図-6 ロジスティック回帰から得られる推定結果の例 

 

4.2 推定結果 
 試料 A，B の正解率を表-2 に示す．正解率は，全体に

占める正解の割合であり，正解数を全データ数で除して

求める．先述したように，学習用・検証用データを 10 セ

ット準備し，その結果をまとめている．データセットに

より多少のばらつきはあるものの，おおむね 6 割の正解

率を得ることができた． 
 

表-2 ロジスティック回帰の正解率 
 正解率 

Dataset 試料 A 試料 B 
1 0.51 0.67 
2 0.76 0.67 
3 0.54 0.66 
4 0.63 0.66 
5 0.61 0.67 
6 0.71 0.65 
7 0.56 0.64 
8 0.59 0.57 
9 0.59 0.64 

10 0.63 0.68 
Average 0.61 0.65 

 

図-7 はロジスティック回帰における決定境界の一例を

示している．識別関数として多項式を用いているため，

非線形の決定境界が得られていることが分かる．なお，

より高次の多項式を用いることで，より複雑なデータに

も対応できることを付記する． 
各試料を訓練データとして，もう一方の試料の岩級区

分を行った結果を表-3，4 に示す．ここで，適合率は推定

結果のうち，どれだけ「本当に正しいもの」が含まれて

いるかの割合を意味し，再現率は，推定対象や真に存在 

 
(a) 試料 A 

(b) 試料 B 
 
 

表-3 試料 A のモデルで試料 B を評価した結果 

岩級区分 適合率 再現率 F1 スコア データ数 

CM 0.29 0.68 0.41 139 

     

CL 0.38 0.40 0.39 339 

D 0.87 0.65 0.74 833 

正解率 0.59 

 
表-4 試料 B のモデルで試料 A を評価した結果 

岩級区分 適合率 再現率 F1 スコア データ数 

CM 0.72 0.15 0.25 86 

CL 0.42 0.51 0.46 81 

D 0.39 0.97 0.56 35 

正解率 0.44 

 
するべきデータのうち，どれだけ「正しく推定できたか」

の割合を意味する．また，F1 スコアとは，適合率と再現

率の調和平均で定義される． 
試料 A のデータを訓練データとして使用したモデルを

試料 B に適用した際の正答率は 59％であった．適合率の

岩級ごとの内訳は，CM 級が 29％，CL 級が 38％，D 級

図-7 決定境界の一例 
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が 87％となり，D 級が最も高い値となった．試料 B は D
級のデータ数が 833と他の岩級よりも 2倍以上多いため，

正答率も高く見積もられると考えられる．しかし，D 級

の F-1 スコアは 0.74 と高い値が得られていることから，

モデルとしての精度は十分であると考えられる． 
 ここで行った検証は，本来のモデルの推定範囲を超え

た外挿的なものであるが，外挿的な推定であってもある

程度推定ができることを確認した．本研究の最終ゴール

は，岩盤の種類や状態によらず，岩級区分を実現できる

方法を構築することであるため，外挿的なデータに対す

る性能評価は重要である．今回，限られたデータに対し

て岩級区分を実施したが，より精度の高い，汎用的な方

法を構築するためには，地道なデータの収集が必要不可

欠である． 
本研究課題として，推定精度が 6 割程度になった原因

について，詳細な検証ができなかった．具体的には，デ

ータ数が限られているため，提案手法の性能が機械学習

のアルゴリズムに大きく依存しているのか，そもそもデ

ータのばらつきによる影響を大きく受けているのか，な

どを詳細に検討することができなかった．今後はデータ

を収集するとともに，データのばらつきによる推定精度

への影響や，複数の機械学習による推定精度の違いにつ

いて検討する必要がある． 
 

 

5．まとめ 

 
本研究では，エコーチップ硬度計を用いて得られたコ

アの硬度（反発値）と X 線コアスキャナーを用いて得ら

れた X 線画像のデータに対して，ロジスティック回帰を

用いた岩級区分法を新たに提案した．学習データに基づ

いて構築したロジスティック回帰モデルの精度について，

検証データを用いて評価した．解析の結果，本研究で提

案した方法では，経験ある技術者が行った岩級区分を 6
～7 割程度の精度で再現できることが明らかとなった．

また，試料 A（B）のデータで学習したモデルを試料 B
（A）の岩級区分に適用した結果，5 割程度の推定精度を

示した．実務に適用できる推定精度ではないものの，本

研究で提案した方法が岩級区分に適用できる可能性は示

すことができた． 
汎用的な方法を構築するためには，より多くのデータ

が必要であり，今後もデータを収集していく予定である．

その中で，別の岩種に対する適用性や，データ量の違い

が推定結果に及ぼす影響について検討したいと考えてい

る． 
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Abstract 
In boring investigations, rock core classification is generally conducted through visual observation based on 
indicators such as rock hardness/softness, shape, degree of weathering/alteration, and RQD, which creates 
inconsistencies in evaluations between engineers. In this research, we propose a new rock classification method 
using logistic regression applied to core hardness data (rebound values) obtained from an Equotip hardness tester 
and X-ray image data acquired using an X-ray core scanner. We evaluated the accuracy of the logistic regression 
model constructed from training data using validation data. The results showed that our proposed logistic 
regression-based method can reproduce rock classifications performed by experienced engineers with 
approximately 60% accuracy.
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